
Vol. 12 (2019) Acta Physica Polonica B Proceedings Supplement No 3

FINITE ELEMENT METHOD FOR SOLVING
THE COLLECTIVE NUCLEAR MODEL
WITH TETRAHEDRAL SYMMETRY∗

A.A. Guseva, S.I. Vinitskya,b, O. Chuluunbaatara,c, A. Góźdźd

A. Dobrowolskid, K. Mazureke, P.M. Krassovitskiya,f

aJoint Institute for Nuclear Research, Dubna, Russia
bRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia

cInstitute of Mathematics, National University of Mongolia
Ulaanbaatar, Mongolia

dInstitute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
eInstitute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

fInstitute of Nuclear Physics, Almaty, Kazakhstan

(Received December 21, 2018)

We apply a new calculation scheme of a finite element method (FEM)
for solving an elliptic boundary-value problem describing a quadrupole vi-
bration collective nuclear model with tetrahedral symmetry. We use shape
functions constructed with interpolation Lagrange polynomials on a trian-
gle finite element grid and compare the FEM results with those obtained
earlier by a finite difference method.
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1. Introduction

In recent papers, the consistent approach to quadrupole–octupole col-
lective vibrations coupled with the rotational motion was presented to find
and/or verify some fingerprints of possible high-rank symmetries (e.g., tetra-
hedral, octahedral, . . . ) in the recent experimental data of nuclear collective
bands [1, 2]. A realistic collective Hamiltonian with variable mass-parameter
tensor and potential obtained through the macroscopic–microscopic Strut-
insky-like method with particle-number-projected BCS approach in full vi-
brational and rotational, nine-dimensional collective space was diagonalized
in the basis of projected harmonic oscillator eigensolutions. In this ap-
proach, the symmetrized orthogonal basis of zero-, one-, two- and three-
phonon oscillator-like functions in vibrational part, coupled with the cor-
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responding Wigner function have been applied for solving the boundary
value problem (BVP) in 6D domain [3]. The algorithms for construction of
the symmetrized basis were considered in [4, 5] w.r.t. symmetrization group
[6–8]. In Ref. [9], the BVP in 2D domain describing the above quadrupole
vibration collective nuclear model of 156Dy nucleus with tetrahedral sym-
metry [10] has been solved by a finite difference method (FDM) that was a
part of the BVP in 6D domain. However, the FDM approach did not obtain
further generalization on the above multi-dimensional domain.

In this paper, we consider the alternative approach which is applica-
ble for solving the BVP in the multi-dimensional domain of d-dimensional
Euclidean space divided into the d! simplexes in the framework of a finite el-
ement method (FEM) with Lagrangian elements and PI-type Gauss quadra-
ture formulas in the simplexes [11–13].

An efficiency of the applied finite element calculation scheme is shown
by the benchmark calculations of the above BVP in the 2D domain. We
apply shape functions on triangle finite element grid using the interpolation
Lagrange polynomials of two variables with quadrature rules in triangle [14]
and compare our FEM results with those obtained earlier by the FDM [9].

2. The setting of the problem

Consider a self-adjoint boundary-value problem for the elliptic differen-
tial equation of the second order [11, 13]

(D−E)Φ(x) ≡

− 1

g0(x)

d∑
ij=1

∂

∂xi
gij(x)

∂

∂xj
+V (x)−E

Φ(x) = 0 . (1)

It is also assumed that g0(x) > 0, gji(x) = gij(x) and V (x) are real-valued
functions, continuous together with their generalized derivatives to a given
order in the domain of x ∈ Ω̄ = Ω ∪ ∂Ω with the piecewise continuous
boundary S = ∂Ω, which provides the existence of nontrivial solutions obey-
ing the boundary conditions of the first kind (I) or the second kind (II)

(I)Φ(x)
∣∣∣
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= 0 , (II)
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= 0 ,
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∂xj
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Here, ∂Φm(x)
∂nD

is the derivative along the conormal direction, n̂ is the outer
normal to the boundary of the domain S = ∂Ω, êi is the unit vector of
x =

∑d
i=1 êixi, and (n̂, êi) is the scalar product in Rd.

For a discrete spectrum problem, the functions Φm(x) from the Sobolev
space Hs≥1

2 (Ω), Φm(x) ∈ Hs≥1
2 (Ω), corresponding to the real eigenvalues

E: E1 ≤ E2 ≤ . . . ≤ Em ≤ . . . satisfy the conditions of normalization and
orthogonality
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〈Φm(x)|Φm′(x)〉 =

∫
Ω

dxg0(x)Φm(x)Φm′(x) = δmm′ , dx = dx1 . . . dxd . (3)

The FEM solution of the boundary-value problems (1)–(3) is reduced to
the determination of stationary points of the variational functional [11, 13]

Ξ(Φm, Em) ≡
∫
Ω

dxg0(x)Φm(x) (D − Em)Φ(x) = Π(Φm, Em) , (4)

where Π(Φ,E) is the symmetric quadratic functional

Π(Φ,E) =

∫
Ω

dx

 d∑
ij=1

gij(x)
∂Φ(x)

∂xi

∂Φ(x)

∂xj
+ g0(x)Φ(x)(V (x)− E)Φ(x)

 .
3. Quadrupole–octupole-vibrational collective model

Below, we solve the BVP (1)–(3) in the 2D domain d = 2 that describe
the quadrupole–octupole-vibrational collective model of 156Dy nucleus [9]
with the coefficients g0(x) and gij(x) determined by the expressions i, j=1, 2

g0(x1, x2) =
2

~2
√

detB(x1, x2) ,

gij(x1, x2) =
√

detB(x1, x2)
[
B−1(x1, x2)

]
ij
. (5)

The coefficients Bij(x1, x2) have been calculated [9] in terms of the average
nuclear deformations x = (x1, x2) = (q20, q32) determined in [15], and shown
in Fig. 1 (a)–(d). The potential energy function V (x1, x2) has been calcu-
lated in the terms of the nuclear deformations x = (x1, x2) = (α20, α32) [9]
and shown in these coordinates as well as in coordinates x = (x1, x2) =
(q20, q32) in Fig. 2 (a), (b).

Table I shows a low part of the spectrum of v = 1, . . . , 10 states of 156Dy
counted from minimum of potential energy (Vmin(α20, α32) = 0.685 MeV).
Second column shows eigenenergies EFDM

v calculated by the FDM code of
the second order [9]. The remaining columns show the eigenvalues EFEM

v (p)
of the BVP (1)–(5) in Ω(q20, q32) with coefficients gij(q20, q32) determined
by formulas (5) and the potential energy functions V (q20, q32) calculated in
the present paper by the FEM code with the Gaussian quadratures PI type
till the eighth order [14]. Calculations have been carried out with the sec-
ond type (II) boundary conditions (2) and orthonormalization condition (3)
with triangular Lagrange elements of the order of p = 1, 2, 3, 4 in the finite
element grid Ω(q20, q32). Discrepancy EFDM

v −EFEM
v (p) between the results
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(a) (b) (c)

(d) (e)

Fig. 1. The coefficients gij(x) from (5) given in variables (q20, q32) (a), (b), (c).
Square root of the determinant g0(x) =

√
detB(q20, q32) constructed out of col-

lective inertia parameters in units 10−5~2/(MeV fm5) (d). The differences EFDM
v −

EFEM
v (p) between eigenvalues of EFDM

v of 156Dy nucleus calculated by the FDM [9]
and EFEM

v (p) calculated in the present paper by FEM with triangular Lagrange
elements of the order of p = 1, 2, 3, 4 for 30 lowest states of the BVP (1)–(5) in
variables (q20, q32) (e).

(a) (b)

Fig. 2. The potential energy V (x1, x2) of 156Dy nucleus given in variables (α20, α32)

(a) and in variables (q20, q32) (b). The nodal points of finite element grid are inter-
section points of horizontal and vertical lines.
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TABLE I

The low part of the spectrum of 10 lowest states of 156Dy nucleus counted from
minimum of potential energy (Vmin(α20, α32) = 0.685 MeV). EFDM

v calculated by
FDM of the second order [9] and EFEM

v (p) calculated by FEM with triangular
Lagrange elements of the order of p = 1, 2, 3, 4 in the present paper.

v EFDM
v EFEM

v (1) EFEM
v (2) EFEM

v (3) EFEM
v (4)

1 0.85988 0.96000 0.91329 0.90234 0.89065
2 0.97588 1.11144 1.04808 1.03297 1.02068
3 1.53669 1.57813 1.54403 1.53371 1.52776
4 1.61774 1.67776 1.63332 1.62287 1.61571
5 1.88907 1.93560 1.87335 1.84504 1.83794
6 1.89469 1.94932 1.87706 1.84925 1.84631
7 1.93369 2.07731 1.99714 1.98486 1.98032
8 2.23907 2.41405 2.34335 2.29594 2.28444
9 2.25778 2.46383 2.35681 2.33287 2.31778
10 2.43288 2.62454 2.55679 2.54278 2.53388

of FDM and FEM calculations in dependence of the order of p = 1, 2, 3, 4 of
the FEM approximation is shown in Fig. 1 (e). One can see that in increas-
ing the order of the FEM approximation the discrepancy is decreased till
1%. Figure 3 displays the corresponding eigenfunctions Φv(q20, q32) in the
finite element grid Ω(q20, q32). The eigenfunctions of the ground and first
excited states are in good agreement with the eigenfunctions calculated in
domain Ω(α20, α32) by the FDM [9]. The third eigenfunction has one node
line in direction α20 in contrast with the third FDM eigenfunction that has
no nodes. Meanwhile, the forth function has two node lines in the direction
of α20 and qualitatively coincides with the forth FDM eigenfunction. We

1 2 3 4 5

6 7 8 9 10

Fig. 3. The first ten eigenfunctions of 156Dy nucleus in the plane (q20, q32).
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can suppose that the revivable distinctions are a consequence of approxima-
tion of table values of V (α20, α32) on the FEM grid Ω(q20, q32) instead of
approximation of derivatives of table values of gij(q20, q32) on the FDM grid
Ω(α20, α32) accepted in [9].

4. Conclusion

We applied the new calculation schemes in the framework of FEM with
the triangular Lagrange elements and Gaussian quadratures for analysis of
the quadrupole vibration collective nuclear model with tetrahedral symme-
try. We constructed shape functions on triangle finite element grid and
compared our FEM results with the obtained earlier by FDM and found
that they are in a good agreement. This approach is directly generalized
for the solving BVP in multidimensional domain by using the algorithms
and their program realization [12, 13]. We will apply the proposed FEM
for solving the BVP in the six dimensional domain describing the above
quadrupole–octupole collective vibration model in our further papers.
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