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The fine structure of the scissors mode is investigated within the Wigner
Function Moments (WFM) method. The solution of time-dependent
Hartree–Fock–Bogoliubov equations by WFM method with the isovector–
isoscalar coupling taken into account predicts splitting of the scissors mode
into three branches. Together with the conventional scissors mode gener-
ated by the counter-rotation of protons against neutrons, two new modes
arise when the spin degrees of freedom are taken into account. First, we
turn to 160,162,164Dy isotopes. Accounting for spin scissors allows to ex-
plain the nature of two groups of M1 excitations with an anomalously large
summed magnetic strength experimentally detected in 164Dy. A compari-
son with the recently reanalyzed data of Oslo-type experiments is presented.
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1. Introduction

In Ref. [1], the Wigner Function Moments (WFM) or phase-space mo-
ments method was applied for the first time to solve the time-dependent
Hartree–Fock–Bogoliubov (TDHFB) equations including spin dynamics. As
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a first step, only the spin–orbit interaction was included in the consideration,
as the most important one among all possible spin-dependent interactions
because it enters into the mean field. The most remarkable result was the
prediction of a new type of nuclear collective motion: rotational oscillations
of “spin-up” nucleons with respect of “spin-down” nucleons (the spin scis-
sors mode). This new type of nuclear scissors complements the conventional
(orbital) scissors mode. Later, its undoubted traces were found in actinides
and in rare-earth nuclei [2].

By definition, the scissors mode is the pure isovector mode. That is why
we divided the dynamical equations describing collective motion (including
scissors) into isovector and isoscalar parts with the aim to separate the pure
scissors mode. It is impossible to perform such separation exactly in the
realistic case, so one is forced to use some approximate procedure. In this
way, we achieved the satisfactory agreement with experimental data [2]. To
test the used approximation, we now solved the coupled dynamical equations
for protons and neutrons exactly, without the artifical isovector–isoscalar
decoupling. As a result, one more magnetic mode (third type of scissors)
appeared. Actually, the existence of three scissors states is easily explained
by combinatoric consideration — there are only three ways to divide the four
different kinds of objects (spin-up and spin-down protons and neutrons in
our case) into two pairs. The analysis of the new situation which appeared
due to the last findings in the description of nuclear scissors is presented in
this paper.

2. Isovector–isoscalar coupling

Let us consider the simple model of the harmonic oscillator with q–q
residual interaction
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where q2µ =
√

16π/5 r2Y2µ and N,Z are the number of neutrons and pro-
tons, respectively.

Integrating the equation for the Wigner function f τ (r,p, t) over phase
space with the weights {r⊗ r}λµ, {p⊗ p}λµ, {r⊗ p}λµ, one gets dynamical
equations for the following second order moments-collective variables:



The Nuclear Spin Scissors Mode — Theory and Experiment 639
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Isoscalar and isovector variables are defined as Xλµ(t) = Xn
λµ(t) + Xp

λµ(t),
X̄λµ(t) = Xn
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where κ0 = (κ + κ̄)/2, κ1 = (κ − κ̄)/2 — strength constants connected
by the relation κ1 = ακ0 [1]. Equations (3) are solved in a small am-
plitude approximation. To this end, all collective variables are written as
Xλµ(t) = Xeq

λµ + Xλµ(t), where Xλµ(t) is an infinitesimally small deviation,
and equations (3) are linearized by neglecting Xλµ(t)2 terms
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Let us analyse, for example, the structure of the coupling terms in the isovec-
tor equation (5): κ1{R̄eq

2 ⊗Rj}λµ+κ0{R2⊗ R̄eq
j }λµ. The isoscalar variables

R are coupled through the difference of the equilibrium characteristics of
the proton and neutron systems R̄eq. There are two methods to decouple
the equations:

1. Just neglect by the coupling terms, that is equivalent to the assump-
tion that all equilibrium characteristics of protons are equal to that of
neutrons.

2. One assumes that all amplitudes (deviations) of protons are propor-
tional to that of neutrons: X pλµ/Z = ±X nλµ/N (+ for isoscalar motion,
− for isovector one).

Both methods produce similar results. In our previous papers [1–4], we used
the first method. Taking into account the pair correlations and spin degrees
of freedom, we obtained the set of 22 coupled isovector equations and the
same number of isoscalar equations. Excluding the integrals of motion, we
obtained 14 non-zero solutions.

3. Effect of the coupling terms

The results of our calculations are presented in Table I, where the en-
ergies, magnetic dipole and electric quadrupole strength are shown for 164Dy.
Left panel — the solutions of decoupled equations, right — isovector–isoscalar
coupling terms are taken into account. Solutions of the isovector system of
decoupled equations are marked as IV and isoscalar solutions are marked
as IS. The first observation is that the high-lying levels are less sensitive to
decoupling. Among the high-lying states, µ = 1 branches of isoscalar (at the
energy of 10.94 MeV) and isovector (Ei = 21.29 MeV) Giant Quadrupole
Resonances are distinguished by a large B(E2) values. The rest of high-lying
states have quite small excitation probabilities and we omit them in further
discussion. The lowest electric level has a complicated origin and we have
not considered it so far.

Comparing the left and right panels, we see that the most remarkable
change happens with the third low-lying level — it acquires rather big mag-
netic strength. So, in the decoupled case, there are 2 isoscalar electric and
2 isovector magnetic low-lying levels, and in the coupled case, there are
1 electric and 3 magnetic levels of mixed isovector–isoscalar nature. These
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TABLE I

The results of WFM calculations for 164Dy: energies Ei, magnetic dipole B(M1)i
and electric quadrupole B(E2)i strength. IS — isoscalar, IV — isovector.

Decoupled equations Coupled equations

Ei B(M1)i B(E2)i Ei B(M1)i B(E2)i
[MeV] [µ2

N ] [W.u.] [MeV] [µ2
N ] [W.u.]

IS 1.29 0.01 53.25 1.47 0.17 25.44
IV 2.44 2.03 0.34 2.20 1.76 3.30
IS 2.62 0.09 2.91 2.87 2.24 0.34
IV 3.35 1.36 1.62 3.59 1.56 4.37
IS 10.94 0.00 55.12 10.92 0.04 50.37
IV 14.04 0.00 2.78 13.10 0.00 2.85
IS 14.60 0.06 0.48 15.42 0.07 0.57
IV 15.88 0.00 0.55 15.55 0.00 1.12
IS 16.46 0.07 0.36 16.78 0.06 0.53
IV 17.69 0.00 0.45 17.69 0.01 0.68
IS 17.90 0.00 0.51 17.91 0.00 0.53
IV 18.22 0.18 1.85 18.22 0.13 0.89
IS 19.32 0.10 0.97 19.32 0.08 0.61
IV 21.29 2.47 31.38 21.26 2.03 21.60

three magnetic states correspond to three physically possible scissors modes.
They are all generated by oscillations of the orbital angular momenta. The
state at the energy of 3.59 MeV is the conventional “orbital” scissors mode,
the last two states at the energies of 2.20 MeV and 2.87 MeV are the “spin”
scissors modes. The difference between “orbital” and “spin” scissors is that
the “orbital” scissors are generated by the counter-oscillations of the orbital
angular momentum of proton body with respect to the orbital angular mo-
mentum of neutron body, whereas the “spin” scissors are generated by the
counter-oscillations of the orbital angular momentum of nucleons with spin
projection “up” with respect to the orbital angular momentum of nucleons
with spin projection “down”.

Figure 1 shows a schematic representation of these modes: the orbital
scissors (neutrons versus protons) and two spin scissors (spin-up nucleons
versus spin-down nucleons and more complicated — spin-up protons to-
gether with spin-down neutrons versus spin-down protons jointed with spin-
up neutrons). Both spin scissors exist only due to the spin degrees of free-
dom. If we remove the arrows from the picture, nothing will change for the
conventional scissors (a). However, figures (b) and (c) in this case become
identical, the division of neutrons and protons in two parts being pointless.
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Fig. 1. (Colour on-line) Schematic representation of three interconnected scissors
modes: (a) spin-scalar isovector (conventional, orbital scissors), (b) spin-vector
isoscalar (spin scissors) and (c) spin-vector isovector (spin scissors). Arrows show
the direction of spin projections; p — protons, n — neutrons. Grey/blue and light
grey/orange ellipses are slightly tilted only for presentation reasons: in reality, they
fully overlap.

The isovector–isoscalar coupling strongly mixes the two spin-vector states.
Strictly speaking, interpretation in terms of isovector–isoscalar excitations
loses its significance, especially for spin scissors. Rather, it is more correct
to speak about the associated response of protons and neutrons. Only the
classification in terms of spin-scalar and spin-vector remains valid. As fol-
lows from our calculations, the spin scissors are lower in energy and stronger
in transition probability than the orbital scissors.

When we try to compare the theoretical results with the existing exper-
imental data for the scissors mode, we encounter different summing interval
conventions. It is assumed that scissors mode includes only the states in
a certain energy range. As a rule, the following two conventions are cho-
sen, which leads to slightly different results for the summed M1 strength:
2.7 < E < 3.7 MeV for Z < 68 and 2.4 < E < 3.7 MeV for Z ≥ 68 [5],
2.5 < E < 4.0 MeV for 82 ≤ N ≤ 126 [6]. Figure 2 demonstrates the
excitation energy spectra of 160,162,164Dy isotopes with the corresponding
B(M1) values obtained by the Nuclear Resonance Fluorescence (NRF) ex-
periment [7]. The dash lines mark the boundaries of the conventional inter-
val [5]. Obviously, there are two groups of strong M1 excitations in 164Dy
around 2.6 and 3.1 MeV. Usually, only the upper group is attributed to
the scissors mode, and the group of around 2.6 MeV is not included. The
strongest argument to exclude the lower group of M1 excitations from the
scissors mode systematics is the significant spin contribution into the mag-
netic strength of this group.

Taking into account isovector–isoscalar coupling allows one to explain
the nature of two groups of 1+ levels with an anomalously large summed
magnetic strength in 164Dy. Table II demonstrates that the energy centroid
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Fig. 2. Excitation energies E with the corresponding B(M1) values, obtained by
the NRF experiment [7]. The dashed lines mark the boundaries of the conventional
interval from [5].

and summed (total, including the spin contribution) B(M1)-value of the
lower group of the experimental 1+ states agree very well with the calcu-
lated E and B(M1) of the lowest spin-vector level. The respective values
of the higher group are in excellent agreement with the energy centroid and
summed B(M1) of the remaining spin-vector and spin-scalar states.

Summation over all excitation energies (presented in the last line of the
table) also gives very good agreement with the theory. According to our
calculations, the lower-energy group of states (which is usually neglected by
experimentalists) also represents a scissors mode (spin scissors).

TABLE II

The energies Ei with excitation probabilities B(M1)i of three scissors and energy
centroids Ē and summed

∑
B(M1) of the spin-vector and spin-scalar states are

compared with experimental values Ē and
∑
B(M1) of two groups of 1+ levels in

164Dy [7]. The results of summation over all excitation energies are shown in the
last line.

Theory (WFM) Experiment

Ei [MeV] B(M1)i [µ2
N ] Ē [MeV]

∑
B(M1) [µ2

N ] Ē [MeV]
∑
B(M1) [µ2

N ]

2.20 1.76 2.20 1.76 2.60 1.67(14)
2.87 2.24 3.17 3.80 3.17 3.85(31)3.59 1.56

2.86 5.56 3.00 5.52(48)
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The calculations have shown that the scissors mode is not pure isovector.
All three scissors modes have an underlying orbital nature, because all are
generated by the same type of collective variables — the orbital angular mo-
menta. At the same time, they are strongly sensitive to the influence of the
spin-dependent part of the external field. It is demonstrated in Table III,
where the results of calculations of B(M1) with (gs = 0.7gfrees ) and without
(gs = 0) the spin part of a dipole magnetic operator are presented. Com-
parison of the second and third columns of the table allows one to observe a
moderate constructive interference of the orbital and spin contributions in
the case of the spin scissors modes and their very strong destructive inter-
ference in the case of the orbital scissors mode.

TABLE III

The results of WFM calculations of B(M1) with (gs =0.7gfrees ) and without (gs =0)
the spin part of a dipole magnetic operator are shown for three scissors modes with
energies Ei.

Ei [MeV] B(M1)i [µ2
N ]

gs = 0.7gfrees gs = 0

2.20 1.76 0.53
2.87 2.24 1.52
3.59 1.56 6.63

In a recent paper [8], the authors revised their previous data on the
160−164Dy obtained in the framework of the Oslo method. It was concluded
that the presented results and previous investigations [9] experimentally con-
firm the validity of the generalized Brink hypothesis for the scissors res-
onance (SR). The summed strengths of SR were compared with NRF [7]
and (n, γ) measurements [10]. The same strength was found provided that
the integration limits for the summed SR strength were used, similar to
those used for the NRF experiments. A quotation from the above paper [8]:
“. . . If we integrate over all transition energies, we find a total, summed SR
strength of 4–5 µ2. The present fit strategy gives about 40% higher summed
SR strengths than the reported NRF results. However, if we apply the
NRF energy limits, we obtain excellent agreement with the NRF results.
It is interesting to note that ∼ 40–60% of our measured SR strength lies
in the energy region below 2.7 MeV. In traditional NRF experiments using
bremsstrahlung, the transitions in this energy range are quite difficult to
separate from the sizable atomic background.”
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Let us compare our latest results with the above experimental findings of
the Oslo group. The comparison of the energy centroids and corresponding
summed SR strength from the WFM theory with the Quasiparticle-Phonon
Nuclear Model (QPNM) calculations [11, 12], experimental results from the
NRF, and, in addition, from photo-neutron measurements (Oslo) is pre-
sented in Table IV and Fig. 3. Comparison is presented for energy interval
from 2.7 to 3.7 MeV and for the appropriate extended energy regions. As
it is seen from Table IV, the theoretical results and experimental data are
in very good overall agreement. The experimental results obtained by the
radiative capture of resonance neutrons [10] are also added in Fig. 3.

TABLE IV

The energy centroids Ē and corresponding summed SR strength B(M1) from the
WFM theory are compared with the QPNM calculations [11, 12], experimental
results by the NRF [7] and photo-neutron measurements (Oslo) [8] for 160,162,164Dy.
Comparison is presented for two energy intervals.

Theory Experiment
ADy WFM QPNM NRF Oslo

Ē [MeV] B(M1) [µ2
N ] B(M1) [µ2

N ] Ē [MeV] B(M1) [µ2
N ] Ē [MeV] B(M1) [µ2

N ]

160Dy

2.7 < E < 3.7 MeV
3.17 3.35 2.46 2.87 2.42(30) 2.66(12) 1.7(10)

2.0 < E < 3.7 MeV 2.5 < E < 4.0 MeV 0 < E < 10 MeV
2.84 5.19 4.61 2.87 2.42(30) 2.66(12) 4.8(26)

162Dy

2.7 < E < 3.7 MeV
3.16 3.58 2.60 2.96 2.59(19) 2.81(8) 2.3(8)

2.0 < E < 3.7 MeV 2.5 < E < 4.0 MeV 0 < E < 10 MeV
2.85 5.38 4.68 2.84 3.30(24) 2.81(8) 4.8(17)

164Dy

2.7 < E < 3.7 MeV
3.17 3.80 2.92 3.17 3.85(31) 2.83(8) 2.8(9)

2.0 < E < 3.9 MeV 2.5 < E < 4.0 MeV 0 < E < 10 MeV
2.86 5.56 5.10 3.00 5.52(48) 2.83(8) 5.5(18)
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Fig. 3. Summed SR strength B(M1) from the QPNM calculations [11, 12], experi-
mental results obtained by the NRF [7], photo-neutron measurements (Oslo) [8] and
radiative capture of resonance neutrons [10] are compared with WFM results. (a)
the results of summation over the extended energy regions, (b) for energy interval
from 2.7 to 3.7 MeV.

4. Conclusion

The dynamical equations describing the nuclear collective motion are
solved exactly, without the artificial division into isovector and isoscalar
parts. As a result, a new type (third one) of nuclear scissors is found. Three
types of scissors can be classified as isovector spin-scalar (conventional),
isovector spin-vector and isoscalar spin-vector. The isovector–isoscalar cou-
pling strongly mixes the two spin-vector states. The calculated energy cen-
troids and summarized transition probabilities of Dy isotopes are in very
good agreement with the experimental results of the Oslo group. The experi-
mental NRF data for 164Dy are in excellent agreement with our calculations,
whereas the data for 160,162Dy are in good agreement only with calculated
centroids of two higher lying scissors: isovector spin-scalar one + isoscalar
spin-vector one. Thus, we agree with the conclusion of the authors of [8]: “It
is highly desirable to remeasure the Dy isotopes by performing NRF exper-
iments using quasi-monochromatic beams in the interesting energy region
between 2 and 4 MeV as done for 232Th.”
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