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Rotational energies of heavy and super-heavy nuclei are evaluated in
the cranking model which couples the pairing field with the rotational
motion. The nuclear ground-state deformation is determined within the
macroscopic–microscopic model.
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1. Introduction

An investigation of heavy and super-heavy nuclei requires a proper model
to reproduce masses and rotational energies. We had obtained in the past [1]
a very good agreement with experimental data for heavy nuclei using the
Yukawa folded (YF) single-particle potential [2] and the Lublin–Strasbourg
Drop (LSD) [3]. The Strutinsky shell-correction method [4] and the BCS
theory [5] were used to evaluate the shell and pairing energy. The equilibrium
deformations of the nuclei were determined with the Modified Funny Hills
(MFH) [1] shape parametrisation, and the energies of the rotational states
obtained using the cranking model [6]. It was shown in Ref. [7] that a
good agreement with the experimental data, especially for larger angular
momenta, can only be achieved when a coupling of rotation and the pairing
mode is taken into account. We are now going to extend our calculations
to rotational states of super-heavy nuclei using a new Fourier-type shape
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parametrization [8] to describe nuclear deformations more accurately. First
results of this project as obtained in a 3-dimensional deformation space are
presented below.

2. Theoretical model

In the macroscopic–microscopic method [9], the total energy of a nu-
cleus at a given deformation (def) is the sum of the macroscopic energy and
microscopic corrections due to shell and pairing effects

Etot(def) = ELSD(def) + Eshell(def) + Epair(def) . (1)

The shell-correction energy is obtained as the difference between the single-
particle energy sum and the corresponding Strutinsky averaged result [4],
while pairing corrections are determined as the difference between the BCS
[5] energy and the single-particle level sum, plus an average pairing energy
[10]. Energy landscapes were calculated in Ref. [1] on a two-dimensional grid
of Modified Funny Hills [11] shapes with the Lublin–Strasbourg Drop and
using Yukawa-folded single-particle levels for the quantal corrections. Rota-
tional states were determined within the cranking model in the ground-state
minimum and reproduced the experimental data or served as predictions in
the case of heavy and super-heavy nuclei as shown in Fig. 1. We are now
going to investigate these and some new even–even super-heavy nuclei using
the new Fourier-shape parametrisation [8] in a 3D space including elongation
(q2), octupole (q3) deformation and neck degrees of freedom (q4).
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Fig. 1. Nuclei for which the energies of rotational states have been determined in
the MFH (× and ?) and Fourier (2) shape parametrizations. The β-stability line
is drawn as a guideline.
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3. Results

The calculations were performed for even–even nuclei with charge num-
bers from Z = 94 to Z = 112, since nuclei with larger Z are probably
not living long enough to perform spectroscopy studies [12]. In Fig. 2, we
present the difference of theoretical and experimental [13] masses of nu-
clei between No and Hs. With the single exception of 264Hs, this devia-
tion never exceeds 0.3 MeV. As an example, the deformation energy sur-
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Fig. 2. Difference between theoretical and experimental masses Mth−Mexp for No
up to Hs even–even isotopes as a function of the neutron number N (see Ref. [1]).

face Edef = Etot(q2, q3, q
min
4 ) − Esph

LSD(0, 0, 0) of 254No is presented in Fig. 3
as a function of the deformation parameters q2 (elongation) and q3 (left–
right asymmetry), with a minimisation with respect to q4 (neck parame-
ter). One observes two pronounced minima corresponding to the ground

Fig. 3. Deformation energy Edef for 254No as a function of elongation q2 and oc-
tupole parameter q3 minimised with respect to q4 (neck degree of freedom).
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and the fission-isomeric state. In Fig. 4, the deformation energy surface
Edef = Etot(0.3, q3, q4)− Esph

LSD(0, 0, 0) of this nucleus
254No is displayed for

the ground state (q2 = 0.3), which turns out to be octupole and hexade-
capole symmetric.

Fig. 4. Deformation energy Edef for 254No as a function of q4 and q3 in a ground-
state elongation q2 = 0.3.

To obtain the rotational energies, EL = L(L + 1)/2J , the moments of
inertia J are calculated microscopically within the cranking model [6] for
the ground state using a Yukawa-folded single-particle potential. Rotational
energies of No isotopes for L/~ = 2, 4, 6, 8, 10, 12 are compared with the
experimental data [14] in Fig. 5. As seen from the figure, one obtains an al-
most perfect agreement when a pairing strengths of GN2/3

q = 0.32 ~ω0 with
Nq = N,Z and ~ω0 = 41MeV/A1/3 when the pairing window of 2

√
15Nq

single-particle levels [15] is used. Figure 6 gives a prediction of the E2+ ro-
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Fig. 5. Theoretical and experimental rotational energies E for 254No as functions
of the angular momentum L.
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tational energies for even–even nuclei between No and Cn. In a forthcoming
extension of the present work, we are going to predict the rotational energies
of heavy and super-heavy nuclei with 92 ≤ Z ≤ 126 and 132 ≤ N ≤ 200
within LSD+YF model using the Fourier shape parametrisation [8, 18] in a
4D deformation space.
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Fig. 6. Rotational energies E2+ for even–even isotopes of nuclei between No and
Cn in their ground state as functions of the neutron number N [16, 17].
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