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Rotational energies of heavy and super-heavy nuclei are evaluated in
the cranking model which couples the pairing field with the rotational
motion. The nuclear ground-state deformation is determined within the
macroscopic—microscopic model.
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1. Introduction

An investigation of heavy and super-heavy nuclei requires a proper model
to reproduce masses and rotational energies. We had obtained in the past [1]
a very good agreement with experimental data for heavy nuclei using the
Yukawa folded (YF) single-particle potential [2] and the Lublin—Strasbourg
Drop (LSD) [3]. The Strutinsky shell-correction method [4] and the BCS
theory [5] were used to evaluate the shell and pairing energy. The equilibrium
deformations of the nuclei were determined with the Modified Funny Hills
(MFH) [1] shape parametrisation, and the energies of the rotational states
obtained using the cranking model [6]. It was shown in Ref. 7] that a
good agreement with the experimental data, especially for larger angular
momenta, can only be achieved when a coupling of rotation and the pairing
mode is taken into account. We are now going to extend our calculations
to rotational states of super-heavy nuclei using a new Fourier-type shape
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parametrization [8] to describe nuclear deformations more accurately. First
results of this project as obtained in a 3-dimensional deformation space are
presented below.

2. Theoretical model

In the macroscopic-microscopic method [9], the total energy of a nu-
cleus at a given deformation (def) is the sum of the macroscopic energy and
microscopic corrections due to shell and pairing effects

FEliot (def) = ELSD (def) + Eshell(def) + Epair(def) . (1)

The shell-correction energy is obtained as the difference between the single-
particle energy sum and the corresponding Strutinsky averaged result [4],
while pairing corrections are determined as the difference between the BCS
[5] energy and the single-particle level sum, plus an average pairing energy
[10]. Energy landscapes were calculated in Ref. [1] on a two-dimensional grid
of Modified Funny Hills [11] shapes with the Lublin—Strasbourg Drop and
using Yukawa-folded single-particle levels for the quantal corrections. Rota-
tional states were determined within the cranking model in the ground-state
minimum and reproduced the experimental data or served as predictions in
the case of heavy and super-heavy nuclei as shown in Fig. 1. We are now
going to investigate these and some new even—even super-heavy nuclei using
the new Fourier-shape parametrisation [8] in a 3D space including elongation
(g2), octupole (g3) deformation and neck degrees of freedom (gy4).
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Fig. 1. Nuclei for which the energies of rotational states have been determined in

the MFH (x and %) and Fourier (O) shape parametrizations. The S-stability line
is drawn as a guideline.
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3. Results

The calculations were performed for even—even nuclei with charge num-
bers from Z = 94 to Z = 112, since nuclei with larger Z are probably
not living long enough to perform spectroscopy studies [12]. In Fig. 2, we
present the difference of theoretical and experimental [13] masses of nu-
clei between No and Hs. With the single exception of 264Hs, this devia-
tion never exceeds 0.3 MeV. As an example, the deformation energy sur-
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Fig.2. Difference between theoretical and experimental masses M, — Mexp for No
up to Hs even—even isotopes as a function of the neutron number N (see Ref. [1]).

face Fget = Eiot(q2, g3, ¢™™) — EE%}]ID(O, 0,0) of 25*No is presented in Fig. 3
as a function of the deformation parameters ga2 (elongation) and g3 (left—
right asymmetry), with a minimisation with respect to ¢4 (neck parame-
ter). One observes two pronounced minima corresponding to the ground
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Fig.3. Deformation energy Eger for 2°4No as a function of elongation ¢ and oc-
tupole parameter ¢3 minimised with respect to ¢4 (neck degree of freedom).
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and the fission-isomeric state. In Fig. 4, the deformation energy surface
Eget = Fiot(0.3,93,q4) — ;%1})(0, 0,0) of this nucleus 23*No is displayed for
the ground state (g2 = 0.3), which turns out to be octupole and hexade-
capole symmetric.
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Fig. 4. Deformation energy Eg.¢ for 2°*No as a function of ¢4 and ¢3 in a ground-
state elongation g5 = 0.3.

To obtain the rotational energies, Fy, = L(L + 1)/2J, the moments of
inertia J are calculated microscopically within the cranking model [6] for
the ground state using a Yukawa-folded single-particle potential. Rotational
energies of No isotopes for L/h = 2,4,6,8,10,12 are compared with the
experimental data [14] in Fig. 5. As seen from the figure, one obtains an al-

most perfect agreement when a pairing strengths of G Nq2 3~ 0.32 hwo with
Ny = N,Z and hwy = 41 MeV/Al/3 when the pairing window of 2,/15N,
single-particle levels [15] is used. Figure 6 gives a prediction of the Fsy, ro-
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Fig.5. Theoretical and experimental rotational energies E for 2°*No as functions
of the angular momentum L.
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tational energies for even—even nuclei between No and Cn. In a forthcoming
extension of the present work, we are going to predict the rotational energies
of heavy and super-heavy nuclei with 92 < Z < 126 and 132 < N < 200
within LSD+YF model using the Fourier shape parametrisation [8, 18| in a
4D deformation space.
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Fig. 6. Rotational energies Fs, for even—even isotopes of nuclei between No and
Cn in their ground state as functions of the neutron number N [16, 17].
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