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We use the Weizsäcker–Skyrme (WS) mass models to systematically
investigate nuclear deformation energies. With an accuracy of 298 keV
for the known masses, the WS4 mass model is quite helpful for exploring
new magic numbers in neutron-rich region and nuclear deformation ener-
gies. We note that the predicted deformation energies of nuclei with the
Hartree–Fock–Bogoliubov (HFB25) model are systematically larger than
those with the WS models, especially for nuclei with sub-shell closures.
The comparison of the deformation energies from the two models and the
corresponding charge radii for nuclei with N = 14 are also presented.
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1. Introduction

As one of the basic quantities and inputs in nuclear physics, nuclear
masses are very important not only in the study of nuclear physics, such
as the synthesis of super-heavy nuclei (SHN) [1–3], fission [4, 5], nuclear
symmetry energy, and so on, but also in the study of astrophysics, such
as the r-process. Up to now, the masses of about 2500 nuclei have already
been measured and those of about 4500 nuclei are still unknown. With great
efforts, a number of nuclear mass models have been successfully proposed
with a root-mean-square (r.m.s.) error of several hundred keV with respect
to the known masses [6–11]. In addition to the mass measurement, the
α-decay energies Qα of about 100 SHN have also been measured. These
data are also helpful to test the available mass models and to study the
structure of SHN [12–14].
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As a macroscopic–microscopic mass model, the Weizsäcker–Skyrme (WS)
model [9–11] was proposed, with considering the isospin dependence of model
parameters and the mirror correction from the isospin symmetry. With
the latest version (WS4) of the model [11], the 2353 measured masses in
AME2012 [15] can be reproduced with an r.m.s. deviation of 298 keV. The
WS models were largely tested by some groups. For example, Sobiczewski
and Litvinov tested the accuracy of 12 different mass models with the data
at different mass regions [16]. They concluded that the WS3.3 model is the
best of all 12 considered models. Very recently, Sobiczewski and his collab-
orators re-tested these models with new data [17]. They concluded that the
best accuracy is obtained by WS3+RBF and WS4+RBF models. RBF de-
notes the radial basis function correction [18, 19] which is a prominent global
interpolation and extrapolation scheme to effectively describe the systematic
errors of a global mass model. Very recently, the masses of 246Es, 251Fm,
249−252Md and 254No were directly measured in RIKEN [20]. After compar-
ison of the predictions from five different models, the authors pointed that
particularly robust agreement is seen with the WS4RBF mass model.

In addition to the isospin dependence of model parameters and isospin
symmetry in the WS models, the consideration of the influence of nuclear
deformations on the macroscopic energy is different from other macroscopic–
microscopic mass models. In the WS models, the deformation factor in
the liquid-drop energy is directly expressed as an analytical formula under
the parabolic approximation for small deformations, which is inspired by
the Skyrme energy density functional together with the extended Thomas–
Fermi approach. The parabolic approximation for deformation factor could
significantly affect the predictions of nuclear deformations at ground states.
Nuclear deformations have direct relationship with nuclear r.m.s. charge ra-
dii and are usually used as a probe to explore the appearance of magicity in
nuclei. It is, therefore, interesting to systematically investigate the nuclear
deformation energies with this model.

2. Deformation factor in the macroscopic energies

In this section, we introduce two nuclear mass models: the Myers–
Swiatecki liquid-drop (MS-LD) model [4] and the WS model for the descrip-
tion of nuclear deformation energies. Here, we focus on the deformation
dependence of potential energies in nuclei around their ground states.
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2.1. Myers–Swiatecki liquid drop model

In the semi-empirical nuclear mass formula proposed by Myers and
Swiatecki, the liquid-drop energy of a nucleus is written as [4]

EMS−LD(A,Z, shape) = −15.667A
(
1− 1.79I2

)
+18.56A2/3

(
1− 1.79I2

)
f(shape)

−1.211
Z2

A
+ 0.717

Z2

A1/3
g(shape) . (1)

The forms of the deformation factor f in the surface energy and g in the
Coulomb energy are very complicated for a realistic nuclear system. For a
distorted sphere with small quadrupole deformations, the factors f and g
can be approximately (to second order) expressed as f(β2) ≈ 1 + β22/(2π)
and g(β2) ≈ 1− β22/(4π), respectively [22].

In Fig. 1, we show the calculated macroscopic energies of 16O and 48Ca
from the MS-LD model. Here, the results from the Skyrme energy density
functional together with the extended Thomas–Fermi approach (ETF2) in-
cluding all terms up to second order in the spatial derivatives [23, 24] are
also presented for comparison. One can see from Fig. 1 that the macroscopic
energy of a nucleus varies with the quadrupole deformations as a parabolic
behavior in general for small deformations, and the curvatures from the two
approaches are close to each other.
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Fig. 1. Macroscopic energies of 16O and 48Ca. The solid curves denote the results
of MS-LD model together with the formulas for f and g in the text. The circles
denote the results from the ETF2 approach with SkM*.
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2.2. Weizsäcker–Skyrme mass model

In the WS model, the total energy of a nucleus is written as a sum of
the liquid-drop energy, the Strutinsky shell correction ∆E and the residual
correction ∆res,

E(A,Z, β) = ELD(A,Z)
∏
k≥2

(
1 + bkβ

2
k

)
+ ∆E(A,Z, β) +∆res . (2)

The liquid-drop energy of a spherical nucleus ELD(A,Z) is described by a
modified Bethe–Weizsäcker mass formula

ELD(A,Z) = avA+ asA
2/3 + EC + asymI

2A+ apairA
−1/3δnp (3)

with the isospin asymmetry I = (N − Z)/A and the Coulomb energy EC.
The deformation factor

∏
(1 + bkβ

2
k) in the WS model is directly ex-

pressed as an analytical formula under the parabolic approximation for small
deformations. Here, we would like to emphasize that the total macroscopic
potential energy is assumed to be a parabolic shape, which does not mean
the same deformation factor for each term in Eq. (3). The mass dependence
of the curvatures bk in Eq. (2) is written as [9]

bk =

(
k

2

)
g1A

1/3 +

(
k

2

)2

g2A
−1/3 , (4)

which significantly reduces the computation time for the calculation of de-
formed nuclei.

2.3. Mass dependence of the curvatures

In Fig. 2, we show the calculated curvatures of the macroscopic potential
energies around small deformations for nuclei along the β-stability line. We
note that the absolute values of the curvatures decrease with masses and
gradually approach zero for SHN, which results in the disappearance of the
macroscopic fission barrier of SHN. In addition, the obtained curvatures with
the MS-LD model together with the formulas for f and g in the text are
slightly smaller than the results from the ETF2 approach. The results of the
WS4 model [11] (with g1 = 0.01046 and g2 = −0.5069) are obviously smaller
than those of two other models at light and intermediate mass region, which
implies that one obtains a relatively smaller nuclear deformations for light
nuclei with the WS4 model.
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Fig. 2. Curvatures bk in the macroscopic energies for nuclei along the β-stability
line. The circles, the squares and the crosses denote the results from ETF2, MS-LD
and WS4, respectively. The solid curve denotes a fit to the squares.

3. Deformation energies of nuclei

The deformation energy is defined as the difference in energy of a nucleus
between its spherical and equilibrium shapes [3], i.e.,

Edef = E(0)− E(βgs) . (5)

Thus, this quantity is the gain in energy of a nucleus due to its deformation.

3.1. Edef of nuclei along the β-stability line

In Fig. 3, we show the predicted deformation energies of nuclei along the
β-stability line with three different mass models: WS*, WS4 and HFB25.
Here, the β-stability line is described by Green’s formula. Nuclear defor-
mations β2, β4 and β6 are considered in the WS calculations. The macro-
scopic potential energy has a minimum at spherical shape according to the
parabolic approximation. Together with the Strutinsky shell correction from
the axially deformed Woods–Saxon potential [21] and the residual correc-
tions, one obtains the ground-state shapes for a certain nucleus. The results
with the WS* model are very close to those with the WS4 model, due to the
same theoretical framework. For nuclei with the known magic numbers, one
can see an evident decrease in the deformation energies. In addition to the
known magic numbers, we note that the deformation energies of nuclei with
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N = 16, 32, 40, 64 are also evidently smaller than those of their neighboring
nuclei. Some studies [25–28] indicate that N = 14, 16, 32 could be magic
numbers in neutron-rich region, which is helpful to further test and improve
nuclear mass models. The results of the HFB25 model are systematically
larger than those of WS* and WS4 models, especially for light and interme-
diate nuclei, which could be due to the different deformation factors adopted
in the models.
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Fig. 3. Deformation energies of nuclei along the β-stability line. The solid curve,
the filled circles and the open circles denote the results from the WS* model, the
WS4 model and the HFB25 model, respectively.

3.2. Edef of nuclei along the shell stability line

According to the calculations of the WS model, it is interesting to note
that a number of nuclei with relatively larger shell corrections (in absolute
value) locate along the lineN = 1.37Z+13.5 which is called the shell stability
line (SSL) [10, 29]. In Fig. 4, we show the contour plot of the calculated shell
corrections from the WS4 model for nuclei over the whole nuclear chart. In
addition to the known doubly-magic nuclei, the shell corrections for 46Si and
78Ni are also evidently large. The experimental investigation on the single-
neutron states in 79Zn at CERN supports the picture of a robust N = 50
shell closure for 78Ni [30]. For 46Si, the neutron number N = 32 could be
new magic number, considering the measured large shell gap in 52Ca [27].
For SHN with Z = 120, there are two minima for the α-decay energies [29]:
Qα = 12.98 MeV at N = 178 which locates at the SSL and Qα = 12.74 MeV
at N = 184. The neutron number in the synthesized SHN 294Og [31] is
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very close to the position of N = 178. It is, therefore, quite interesting and
important to produce more neutron-rich SHN such as 296Og and 297Og to
explore the trend of Qα.
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Fig. 4. Predicted shell corrections with the WS4 mass model.

In addition to the shell corrections, it is also interesting to study the de-
formation energies of nuclei along the SSL. In Fig. 5, we show the calculated
Edef with the three models. For intermediate nuclei with N ≤ 82, the results
from the three models are relatively close to each other. For lanthanides and
SHN around N = 170, the predicted deformation energies with the HFB25
model are obviously larger than the WS calculations.

3.3. Edef and charge radii of nuclei with N = 14

To further understand the discrepancies of the predicted deformation
energies, we systematically compare the results from WS* and HFB27. We
note that the predicted deformations for nuclei with sub-shell closure such
as N = 14 and Z = 64 are quite different from these two models. As an ex-
ample, we show in Fig. 6 (a) the deformation energies of nuclei with N = 14.
The results with the WS* model are significantly smaller than those with
HFB25, since the calculated shapes for these nuclei at their ground states
are nearly spherical from the WS* model, whereas well-deformed shapes are
predicted for these nuclei from the HFB25 model.

Due to the difficulties to directly measure the deformation energies of
nuclei, it is, therefore, necessary to determine the shapes of these nuclei from
other quantities. It is known that nuclear r.m.s. charge radii are directly re-
lated to nuclear shapes. Considering the quadrupole β2 and hexadecapole
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Fig. 5. The same as Fig. 3 but for nuclei along the line N = 1.37Z + 13.5.
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Fig. 6. Deformation energies (a) and r.m.s. charge radii (b) for nuclei with N = 14.
The dashed and the solid curves denote the results from the HFB25 model and the
WS* model, respectively. The squares denote the data from [33].

β4 deformations of nuclei, the r.m.s. charge radius rch of a nucleus can be ap-
proximately written as [32]

rch =
〈
r2
〉1/2 '√3

5
Rc

[
1 +

5

8π

(
β22 + β24

)]
. (6)
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The increase of nuclear deformations should cause an increase of nuclear
r.m.s. charge radius. In Fig. 6 (b), we show the corresponding r.m.s. charge
radii of these nuclei. The solid curve denote the WS* calculations [32],
i.e. with Rc = 1.226A1/3 + 2.86A−2/3 − 1.09(I − I2) + 0.99∆E together
with the shell corrections ∆E and nuclear deformations from the WS* mass
model. The experimental data [33] can be well reproduced with the WS*
calculations. The predictions from the HFB25 are systematically larger than
the data, which might be due to the over-predicted nuclear deformations.

4. Summary and discussions

With the parabolic approximation for the deformation factor in the
macroscopic potential energy, the mirror constraint for the Strutinsky shell
corrections and some residual corrections, the Weizsäcker–Skyrme (WS4)
mass model can reproduce the 2353 known masses with an r.m.s. deviation
of 298 keV. The tests for the WS models from some groups support its good
predictive power. With this model, we systematically investigate the defor-
mation energies of nuclei. In addition to the known magic numbers, we find
that the deformation energies of nuclei with N = 16, 32, 40, 64 are also evi-
dently smaller than those of their neighbouring nuclei. We also note that the
predicted deformation energies of nuclei with the Hartree–Fock–Bogoliubov
(HFB25) model are systematically larger than those with the WS models,
especially for nuclei with sub-shell closures. It is probably due to that: (1)
the curvatures of the deformation factor in the WS4 model are obviously
smaller than those of HFB25 at light and intermediate mass region, and
(2) the nuclear deformations for some nuclei with sub-shell closures such as
N = 14 might be over-predicted in the HFB25 calculations.

Obviously, the parabolic approximation for the deformation factor adopt-
ed in the present versions of the WS models is not applicable in the study of
the potential energy surface along nuclear fission path in which the extremely
large deformations of nuclear system are involved. To extend the WS models
for description of nuclear large deformations, the higher order terms in the
deformation factor should be further considered.
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