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We describe an attempt to use the renormalization group equations for
interpolating between the BFKL Pomeron in perturbative QCD and the
soft Pomeron in pp scattering.
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1. Introduction

The high-energy behavior of elastic proton–proton scattering has always
been a topic of high interest. In particular, in recent years, the LHC has
provided new data which have stimulated attempts to find a theoretical
description. Up to today, there is no theory based upon QCD which allows
access to this nonperturbative hadron–hadron scattering process.

In perturbative QCD high-energy scattering processes, in the simplest
approximation, are described by the BFKL Pomeron, a bound state of two
(reggeized) gluons: it applies to the scattering of small-size objects, such as
highly virtual photons or jet production with large rapidity gaps (Mueller–
Navelet jets). The cross section of these processes exhibits a rise with energy,
resulting from the BFKL intercept above one. At asymptotic energies, it is
expected that this BFKL description will require unitarity corrections. On
the other hand, in proton–proton scattering, transverse sizes are of the or-
der of the proton radius and thus the scattering amplitude becomes nonper-
turbative. Successful descriptions are based upon phenomenological Regge
models, e.g. the well-known soft Pomeron of Donnachie and Landshoff with
intercept much closer to unity than the perturbative BFKL Pomeron. Re-
cent LHC data have also stimulated discussions whether, in addition to
the Pomeron with even C-parity, there exists also a C-odd exchange, the
so-called odderon which should manifest itself in differences of the cross
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sections when comparing proton–proton and proton–antiproton scattering.
Interesting enough, on the perturbative side an odderon exists, as a bound
state of three (reggeized) gluons.

It appears tempting to search for a connection between the perturbative
BFKL Pomeron, valid for small transverse distances, and the nonperturba-
tive soft Pomeron governed by larger transverse distances in the confinement
region. In quantum field theory, the renormalization group provides a bridge
between different momentum (or distance) scales. For practical calculations,
the exact renormalization group equations (RGE, Wetterich equations [1, 2])
offer a convenient formulation which is now widely being used, e.g. in solid
state physics, gravity or in QCD.

Some time ago, we have started [3–5] an attempt to make use of this
RGE formalism for finding a bridge between the perturbative (UV) region
and the nonperturbative (IR) region. In the first step, we have investigated
the IR region: in this region, we make use of (local) Reggeon Field Theory,
and we have studied the fixed point structure of different theories containing
Pomeron and/or odderon fields. More recently [5], we have begun to address
the UV region. First results of this UV study will be presented in this paper.

2. RG equation of the BFKL Green’s function

Let me first give a general overview about this part of our program.
The starting point is QCD. However, instead of beginning with the stan-
dard QCD Lagrangian, we make use of the high-energy description of QCD
developed by Lipatov, the so-called effective action [6]. The essential new
ingredient is the reggeized gluon which, in QCD at high energies, replaces
the elementary gluon exchange. Based upon this effective action, we formu-
late an effective field theory in 2 + 1 dimensions. It contains fields for the
reggeized gluon which propagate in rapidity, as well as elementary gluons
which are local in rapidity. This field theory allows to derive the leading
order BFKL Pomeron as a bound state of two reggeized gluons. After the
introduction of an IR regulator
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which suppresses the low-momentum region. This effective field theory can
be used to formulate RG equations. Without further approximations, we
first find a differential equation for the derivative of the (IR regulated) lead-
ing order BFKL Pomeron with respect to the cutoff parameter k. Diagram-
matically, this equation can be formulated as in Fig. 1. It has the form of the
nonlinear infrared evolution equations derived by Lipatov and Kirschner [7].
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Fig. 1. Derivative of the BFKL ladder w.r.t. the cutoff.

In [5], it is then shown that the same equation can be derived from the
flow equations [1, 2]
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Using our effective field theory mentioned before and taking functional deriva-
tives with respect to the gluon fields, one arrives at an infinite set of coupled
flow equations. Then, by employing special identities of vertex function, one
derives — without further truncations — closed two-loop equations. One of
them is the equation for the four point function, the BFKL Green’s function
illustrated above. This result implies that the BFKL Pomeron satisfies the
flow equations. In practice, however, it may be more convenient, rather than
solving the set of flow equations, to make use of the nonlinear differential
equation which has been shown to be equivalent to the set of flow equations.

In the next step, we introduce the triple Pomeron vertex. For this, the
effective field theory described before has to be generalized such that it
allows for the 2→ 4 transition vertex of reggeized gluons (Fig. 2 (a)).

a b

(a) (b)

Fig. 2. The triple Pomeron vertex: (a) the 2 → 4 transition vertex of reggeized
gluons, (b) convolution with bound state Pomeron fields.
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This transition vertex, in momentum space, has first been derived in
[8] and further investigated in, e.g., [9]. After transformation to coordinate
space, it has been shown to coincide with the kernel of the BK-equation.

For the study of the impact of this triple Pomeron vertex, it becomes
much more convenient to switch, from our effective field theory which is
formulated in terms of gluon fields, to Reggeon Field Theory of the bound
state of two reggeized gluons. They are obtained from the eigenstates ψn of
the BFKL kernel, and their intercepts are given by the eigenvalues ωn

Gk =
1

ω − K̃k

=
∑
n

ψn,k (q′, q − q′)ψ∗n,k (q′′, q − q′′)

ω − ωn,k
+ continuous part . (4)

(Here, the subscript k denotes the dependence upon the cutoff parame-
ter.) These Pomeron fields, together with their interactions, define a local
Reggeon Field Theory which can further be studied by the methods outlined
in our earlier papers [3, 4]. The most important interaction is given by the
triple Pomeron vertices: in our bound state formulation, they are obtained
by convoluting the 2 → 4 transition vertex of reggeized gluons with the
Pomeron bound state wave functions (Fig. 2 (b)).

3. Numerical analysis of the spectrum of the regulated
BFKL equation

In order to further proceed along these lines, we need to study numer-
ically the eigenvalue spectrum of the BFKL kernel, with the IR regulator
included in the momentum propagators and the fixed QCD coupling αs being
replaced by the running coupling
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For illustration, we present the regulated kernel in the forward direction
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For this kernel, we have computed eigenvalues, eigenfunctions and slopes
(the latter quantities are obtained by expanding the BFKL kernel in powers
of the momentum transfer q2), for different values of the IR cutoff k. Cal-
culations are done by discretizing the momentum integrations. Details are
found in [5]; here, we only summarize the main features.

(a) The eigenvalues: as it is well known, the spectrum of the leading order
BFKL Pomeron without IR cutoff and running coupling consists of a
fixed cut in the ω plane which runs from the positive value ωBFKL =
4 ln 2αsNc

π to −∞. Several attempts of introducing an infrared cutoff
and the running coupling (e.g. with the Higgs mechanism [10, 11],
infrared boundary values [12, 13]) lead to the same modification of
this picture: on the positive side of the ω axis, the cut is replaced
by an infinite number of discrete poles which accumulate at ω = 0.
On the negative ω axis the cut remains. Our calculations have the
same pattern, and we have computed the leading eigenvalues ωn for
n = 1, . . . , 16 (see Fig. 3).

The n-dependence of these eigenvalues is approximately given by (for
k = 1 GeV).

ωn ≈
1

0.052 + 2.24n
. (10)
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Fig. 3. Intercepts of the leading discrete Pomeron states.
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(b) Only the first leading eigenfunction (n = 1) has its main support in the
region of small momenta. With increasing n, the support very quickly
moves into the UV-region. Defining for each state a (logarithmic)
radius Rn = 〈ln q2〉 we find a linear growth with n. In detail, for k =
1 GeV we find for the first three eigenstates the radii R1 = 4.7 GeV,
R2 = 1.2× 102 GeV, and R3 = 3.3× 103 GeV. This implies that only
the state with = 1 can be named “soft”, whereas all others are “hard”.

(c) The slopes α′n go to zero rapidly with increasing n

1

153.11 + 23.342n2
(11)

(again, for k = 1 GeV).

(d) Increasing the IR cutoff k, we find that the eigenvalues and slopes
become smaller, whereas the radii increase.

4. Conclusions

We are now facing the most interesting question: what happens to this
infinite number of Pomeron states of the BFKL Pomeron once the interaction
between the Pomeron fields is included, in particular how do the Pomeron
loops generated by the triple Pomeron vertices affect the free BFKL states?
In order to find answers to these questions, we first will compute the nu-
merical values of the triple Pomeron vertices (cf. Fig. 2 (b)), and then use
this as input to a RFT flow analysis, as prepared in [3, 4]. Work along these
lines is in progress.
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