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RAPIDITY GAPS AND ANCESTRY∗ ∗∗
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The recently discovered correspondence between the distribution of ra-
pidity gaps in electron–nucleus diffractive processes and the statistics of
the height of genealogical trees in branching random walks is reviewed.
In addition, a new comparison of numerical solutions of exact equations
for diffraction on the one hand, and for ancestry on the other hand, both
established in the framework of the color dipole model, is presented.
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1. Rapidity gap distribution in deep-inelastic scattering

In the scattering of electrons off protons at very high energies1, a par-
ticularly striking — and a priori surprising — phenomenon was discovered
experimentally: hard diffraction. In a significant proportion of the events
(about 10% overall at the DESY-HERA collider), the proton left the col-
lision unaltered, while in the forward region of the scattered electron, a
hadronic system was observed, as a result of the dissociation of the virtual
photon mediating the interaction (see Fig. 1). Diffractive events may be la-
beled with the size of the region void of particles surrounding the scattered
proton, which can be characterized by a Lorentz-invariant rapidity gap vari-
able y0. The latter fluctuates from event-to-event between (almost) zero and
the maximum available rapidity Y = ln ŝ/Q2, where ŝ is the squared center-
of-mass energy of the γ∗-proton/nucleus subreaction, and Q the virtuality
of the photon. What has been observed in high-energy electron–proton scat-
tering is also expected in electron–nucleus collisions at a future Electron–Ion
Collider (EIC).
∗ Presented at the Diffraction and Low-x 2018 Workshop, August 26–September 1,
2018, Reggio Calabria, Italy.
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1 For the background on all aspects of high-energy scattering, see the textbook of
Ref. [1].
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Fig. 1. Diffractive dissociation event recorded in the H1 detector. The highly-
energetic proton (entering from the right) interacts elastically, picks a small trans-
verse momentum compared to its longitudinal momentum and, therefore, does not
leave any track in the detector. The virtual photon instead is converted into a
hadronic system. The angular sector between the momentum of the scattered
proton and the produced hadronic system void of any activity is the rapidity gap.

Some time ago, an equation for the distribution of rapidity gaps was in
this context rigorously established by Kovchegov and Levin (KL) [2]. How-
ever, solving it analytically remains a formidable challenge. They did not
address directly deep-inelastic scattering, but instead onium–nucleus scatter-
ing, which is straightforwardly related to the former when the interaction be-
tween the electron and the nucleus is mediated by a longitudinally-polarized
virtual photon.

Let us consider an onium of size r scattering off a big nucleus. In the KL
formulation, the distribution of the rapidity gaps is the solution of a system
of two equations. The first one is the Balitsky–Kovchegov (BK) equation for
the rapidity evolution of the forward elastic S-matrix element2. Introducing
the notation ᾱ ≡ αsNc/π, the BK equation reads

∂yS(r, y) = ᾱ

∫
d2r′

2π

r2

r′2 (r − r′)2
[
S
(
r′, y

)
S
(
r − r′, y

)
− S(r, y)

]
. (1)

The initial condition is given by e.g. the McLerran–Venugopalan (MV)

model, S(r, y = 0) = e−
r2Q2

MV
4

ln(e+4/r2Λ2
QCD), with QMV the saturation mo-

2 The (dimensionless) total, elastic and inelastic cross sections per impact parameter
may be derived from S, which is essentially real at high energy: σtot = 2(1 − S),
σel = (1 − S)2, σin = σtot − σel = 1 − S2. These formulas show, in particular, that
the elastic cross section is maximum (and equal to the inelastic one) when S = 0.
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mentum of the nucleus. 1/QMV can be interpreted as the dipole size above
which the scattering occurs with unit probability [i.e. S(r�1/QMV, 0)�1].
The rapidity gap distribution is deduced from an auxiliary function S2(r, ỹ)
which also obeys the BK equation3

∂ỹS2 (r, ỹ) = ᾱ

∫
d2r′

2π

r2

r′2 (r − r′)2
[
S2
(
r′, ỹ

)
S2
(
r − r′, ỹ

)
− S2 (r, ỹ)

]
,

(2)
with the initial condition S2(r, ỹ = 0) = [S(r, y0)]

2. In terms of S2, the gap
distribution then reads

dσdiff(y0|r, Y )

dy0
=

∂

∂ỹ

∣∣∣∣
ỹ=Y−y0

S2(r, ỹ) . (3)

The work presented here may be viewed as an effort to find a solution to
the KL set of equations (1), (2). However, instead of trying to solve it brute
force, which is technically extremely challenging, we develop a picture of
diffractive scattering from which, what we believe, should be the asymptotics
of the KL equation (almost) straightforwardly follow and which points to a
deep link with ancestry problems in branching random walks. The present
write-up shortly summarizes the papers in Refs. [3, 4] before presenting
a new numerical comparative study of exact equations for diffraction and
ancestry in the dipole model (see Sec. 3.2 below).

2. Picture of onium–nucleus scattering

2.1. Total cross section in the onium and nucleus restframes

In the onium restframe, the nucleus appears in a highly-evolved and occu-
pied state, while the dominant state of the onium is a bare quark–antiquark
pair. Event-by-event fluctuations are negligible; S may be interpreted as the
“transparency” of the boosted nucleus.

In the nucleus restframe instead, the whole evolution is in the onium,
which appears typically as a set of many gluons (represented by dipoles in the
large number-of-color limit [5]), whose detailed content strongly fluctuates
from event-to-event. For a scattering to occur, there should be at least one
gluon in this set which has a transverse momentum of the order of QMV,
so that the whole state has a non-negligible probability to scatter with the
nucleus. In this context, 1 − S can be interpreted as the probability that
the Fock state of the onium contains at least one gluon with a transverse
momentum of that magnitude.

3 Equations (1), (2) also follow quite straightforwardly from the Good–Walker picture,
see Ref. [3].
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2.2. Diffractive cross section in the y0-frame

Let us now choose a frame in which the nucleus is boosted to rapidity y0
and the onium to rapidity ỹ0 = Y − y0. In order to have a diffractive event
exhibiting a gap y0 with unit probability, one needs at least one gluon in
the Fock state of the onium whose transverse momentum is smaller than the
saturation scale at rapidity y0, Qs(y0)

4. Indeed, this condition makes sure
that the elastic interaction cross section of the onium is significant. The
diffractive cross section dσdiff/dy0 is tantamount to this very probability. A
straightforward calculation leads to an elegant formula for the latter, once
normalized to the total cross section

1

σtot

dσdiff
dy0

= const×
[

ᾱY

ᾱy0(ᾱY − ᾱy0)

]3/2
. (4)

The overall numerical constant, of the order of unity, cannot be determined
within the present approach. This formula is actually only valid in the so-
called scaling region, defined by the following constraints on the parameters:
1� ln r2Q2

s (Y )�
√
χ′′(γ0)ᾱY .

3. Ancestry

3.1. Height of genealogical trees in branching random walks

It has been known for some time that dipole evolution is a peculiar
branching random walk [6]. One of the main results of Refs. [3, 4] is the
surprising observation that the structure of the branches may be directly
related to an observable in high-energy physics.

Boosting a bare onium of size r by one unit in the rapidity ỹ opens the
phase space for quantum fluctuations in the form of additional gluons popu-
lating its Fock state. A one-gluon emission by the onium may be interpreted
as the splitting of a color dipole into two dipoles, of different sizes. Upon
a further boost, each of these two dipoles may split independently through
the same process. Thus, one understands that QCD evolution is a branching
process of dipoles in rapidity with a random walk in the sizes of the latter5.

Now boost to rapidity Y takes e.g. the two largest dipole in the Fock state
and track their first common ancestor. According to Ref. [7], the rapidity
y0 at which the ancestor branches is distributed as

4 Denoting by χ(γ) the eigenvalue of the linearized BK equation about S ∼ 1 corre-
sponding to the eigenfunction 1 − S = r2γ and by γ0 the solution of the equation
χ(γ0) = γ0χ

′(γ0), one has Q2
s (y0) = Q2

MVe
ᾱy0χ

′(γ0)/(ᾱy0)3/2γ0 .
5 The relevant scale for the dipole sizes is logarithmic, and the relevant evolution vari-
able is the scaled rapidity ᾱY . Actually, the process is diffusive only if one looks at
a fixed impact parameter, but this is what turns out to be relevant here.
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p(y0|r, Y ) = cp

[
ᾱY

ᾱy0(ᾱY − ᾱy0)

]3/2
with cp =

1

γ̄

1√
2πχ′′(γ0)

. (5)

The value of γ̄ depends on which dipoles are picked: In the present case,
γ̄ coincides with γ0. Formula (5) was actually not established in the peculiar
context of dipole evolution of interest for particle physics, but was argued
to apply to a wide class of branching random walks. We also expect it to
be correct (up to the overall numerical factor) for related quantities, such as
the rapidity distribution of the common ancestor of all dipoles larger than
some given (large enough) size 1/QMV

6.
Equation (5) was found by assuming that the common ancestor was an

unusually large object generated around the rapidity ỹ0 = Y −y0 in the evo-
lution of the onium [7]. This is exactly the same mechanism as in the case
of the diffraction problem (see Sec. 2.2). Hence, the two problems are inti-
mately related: up to the overall normalization, which is determined in the
case of the genealogies but not in the case of diffraction, (1/σtot)(dσdiff/dy0)
corresponds to p(y0|r, Y ).

In order to check quantitatively this correspondence between diffraction
and ancestry, we have established exact equations for ancestry and have
compared their numerical solutions to those for diffraction.

3.2. Ancestry equation for dipoles and its numerical solution

The distribution p>(y0|r, Y ) of the rapidity at which the first common
ancestor of all dipoles larger than 1/QMV (or, alternatively, of a set of dipoles
randomly picked among the dipoles present in the Fock state at rapidity Y
with some probability T (r)) first splits obeys the following equation:

∂yp>(y0|r, y) = ᾱ

∫
d2r′

2π

r2

r′2 (r − r′)2

×
[
p>
(
y0|r′, y

)
S
(
r − r′, y

)
+ S

(
r′, y

)
p>
(
y0|r − r′, y

)
− p>(y0|r, y)

]
, (6)

where S solves Eq. (1) with the initial condition S(r, 0) = 1 − T (r) 7. The
initial condition for p> reads

p>(y0|r, y0) = ᾱ

∫
d2r′

2π

r2

r′2 (r − r′)2
[
1−S

(
r′, y0

)] [
1−S

(
r − r′, y0

)]
. (7)

6 This holds true if r, ᾱY and QMV are such that one is in the scaling region defined
at the end of Sec. 2.2.

7 If one wanted to consider the common ancestor of all dipoles larger than 1/QMV,
then one would use as an initial condition T (r, 0) = θ(ln r2Q2

MV). In our calculation,
T = 1 − S, where S is given by the MV model, which is a bit less sharp than the θ
function.
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The numerical solutions of the equations for p> and for (1/σtot)(dσdiff/dy0)
are shown in Fig. 2: Both are in very good agreement with Eq. (4), with
an overall constant of the order of 1. Trying to understand analytically this
constant is one of our current goals.
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Fig. 2. Numerical solution of the equation for (1/σtot)(dσdiff/dy0) (labeled “Diffrac-
tion”; from Ref. [4]) and for p> (“Ancestry”; from Ref. [8]) as a function of ᾱ(Y −y0),
with the parameters set to ᾱY = 20 and rQMV = 4 × 10−21. The continuous line
has been generated from the analytical formula (5) with γ̄ = 1.

REFERENCES

[1] Y.V. Kovchegov, E. Levin, Quantum Chromodynamics at High Energy,
Cambridge University Press, 2012, ISBN 978-0521112574.

[2] Y.V. Kovchegov, E. Levin, Nucl. Phys. B 577, 221 (2000)
[arXiv:hep-ph/9911523].

[3] A.H. Mueller, S. Munier, Phys. Rev. D 98, 034021 (2018)
[arXiv:1805.02847 [hep-ph]].

[4] A.H. Mueller, S. Munier, Phys. Rev. Lett. 121, 082001 (2018)
[arXiv:1805.09417 [hop-ph]].

[5] A.H. Mueller, Nucl. Phys. B 415, 373 (1994).
[6] S. Munier, Sci. China Phys. Mech. Astron. 58, 81001 (2015)

[arXiv:1410.6478 [hep-ph]].
[7] B. Derrida, P. Mottishaw, Europhys. Lett. 115, 40005 (2016).
[8] D. Le Anh, Master’s Thesis, École Polytechnique, 2018 (unpublished).

http://dx.doi.org/10.1016/S0550-3213(00)00125-5
http://dx.doi.org/10.1103/PhysRevD.98.034021
http://dx.doi.org/10.1103/PhysRevLett.121.082001
http://dx.doi.org/10.1016/0550-3213(94)90116-3
http://dx.doi.org/10.1007/s11433-015-5666-7
http://dx.doi.org/10.1209/0295-5075/115/40005

	1 Rapidity gap distribution in deep-inelastic scattering
	2 Picture of onium–nucleus scattering
	2.1 Total cross section in the onium and nucleus restframes
	2.2 Diffractive cross section in the y0-frame

	3 Ancestry
	3.1 Height of genealogical trees in branching random walks
	3.2 Ancestry equation for dipoles and its numerical solution


