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The factorization theorem for the Drell–Yan process and semi-inclusive
deep inelastic scattering holds for all leading-twist transverse momentum
distributions. In this context, a QCD perturbative calculation shows sev-
eral important characteristics of spin-dependent distributions. We con-
sider all the different spin-dependent distributions which can be matched
onto integrated twist-2 functions, focusing on the matching of the transver-
sity and pretzelosity distributions up to next-to-next-to-leading-order. The
pretzelosity case is specially relevant because, using a direct perturbative
calculation, we obtain a null result up to two loops, which agrees with the
experimental measurements.
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1. Introduction

The recent advances in the study of the transverse-momentum-dependent
distributions (TMD) allow to unravel the structure of hadrons in great detail.
Through the so-called factorization theorems, we construct expressions for
cross sections of interesting processes as the Drell–Yan or semi-inclusive
deep inelastic scattering (SIDIS) [1–3] in terms of TMD parton distribution
functions (TMDPDF) and fragmentation functions (TMDFF). Higher order
calculations in QCD for these TMD distributions are important to increase
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the predictive power of the framework [4, 5] in the description of the available
experimental data. Increasing the perturbative order in the calculations of
TMD distributions allows for better theoretical uncertainties.

The efforts to increase the perturbative order of the elements of TMD
factorization theorems at next-to-next-to-leading-order (NNLO) have given
us the evolution of the TMD distributions up to two and three loops [6–8].
The unpolarized TMD distribution matchings of TMDPDFs and TMDFFs
have been studied up to two loops respectively in [9–11] and in [11].

The status of the polarized distributions is less advanced. We focus
on the two transversely polarized distributions: transversity and pretzelos-
ity TMDs. Their matching up to two loops is evaluated in [12]. These
two distributions are very interesting because they have been recently sub-
ject of experimental, phenomenological and theoretical investigations. The
relevant data for these extractions come mainly from HERMES [13] and
COMPASS [14].

The TMD transversity distribution has been extracted using SIDIS data
in e.g. [15] with Gaussian models without taking into account the TMD evo-
lution. In these cases, the size of the theoretical errors is difficult to estimate.
In order to provide this information, we need to introduce higher order per-
turbative information as the calculation of the matching coefficients we are
going to recall in these proceedings. For the unpolarized TMD distribution,
this analysis has been recently done in [5] decreasing the size of the theoret-
ical uncertainties substantially. In principle, a similar analysis can also be
done for the polarized distribution that we have studied.

For the pretzelosity distribution, we outline here the recent analysis made
in [16, 17]. In these analyses, a practically null value for this distribution is
obtained that agrees with our analysis done at up to two loops in [12, 18].

2. Transversely polarized distributions

The transversity and pretzelosity TMD distributions are derived from a
general transversely polarized TMD distribution

Φ
[iσα+γ5]
q←h (x, b) =

1

2

∫
dλ

2π
e−ixp

+λ

×〈P, S|T̄
{
q̄ (λn+ b) W̃T

n (λn+ b)
}
iσα+γ5 T

{
W̃T†
n (0)q(0)

}
|P, S〉 , (1)

where the index α is transverse and n is a light-like vector. The collinear
Wilson lines WT

n (x) introduce the rapidity divergences, unique feature of
TMDs. They are renormalized by the proper rapidity renormalization fac-
tor R, which is built from the TMD soft factor [1, 3, 6, 19] in terms of soft
Wilson lines
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S (b) =
Trcolor

Nc
〈0|
[
ST†
n S̃T

n̄

]
(b)
[
S̃T†
n̄ ST

n

]
(0)|0〉 . (2)

The R factor depends on the rapidity regularization scheme used. In
our case, it is the modified δ-regularization scheme, which is based in a
regularization of the rapidity divergences directly at the operator level, by
using modified Wilson lines. E.g. for soft ones

Sn = P exp

−ig ∞∫
0

dσ(n ·As)(nσ)e−δσ

 (3)

in the limit δ → 0. In this scheme, the rapidity renormalization factor
can be written simply as R = 1/

√
S. This fact makes possible to write a

renormalized TMD distribution in a simple way

Φren (x, b;µ, ζ) = Z(µ, ζ|ε)R (b, µ, ζ|ε, δ)Φunsub (x, b|ε, δ) , (4)

where Z renormalizes the UV divergences and R the rapidity ones.
To study the leading-twist matching of the distributions we are inter-

ested in, we use the operator product expansion (OPE) that allows for the
expansion of the TMD operator in powers of b. The evaluation of the matrix
elements of the small-b OPE for our TMD operator results in the following
expression:

Φ
[iσα+γ5]
q←h (x, b) =

∑
f

[
Cαβq←f ;tw−2 (b)⊗ hβ;tw−2

f←h

]
(x) + . . . , (5)

where h are collinear distributions, C are matching coefficients functions
and ⊗ symbol stands for the Mellin convolution in the momentum fractions.
The points include distributions that can be produced only at twist-3 [20].

The twist-2 coefficient functions have structures ∼ gαβT and ∼ bαbβ/b2.
Thus, the natural decomposition of this function is

Cαβq←f ;tw−2 (x, b) = gαβT δCq←f (x,Lµ)+

(
gαβT

2(1− ε)
+
bαbβ

b2

)
δ⊥Cq←f (x,Lµ) ,

(6)
where ε is the parameter of dimensional regularization (d = 4 − 2ε) and
Lµ = ln( µ2b 2

4e−2γE
) is the only way in which the matching coefficients depend on

the transverse position. As the pieces of the decomposition do not mix with
each other, we find individual matching for each TMD distributions. We
show here the one for transversity TMD distribution, having an analogous
expression for pretzelosity
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hq1 (x, b) =

1∫
x

dy

y

∑
f=q,q̄

δCq←f

(
x

y
,Lµ

)
hf1(y) +O

(
b2
)
. (7)

3. Matching of the transversity distribution at NNLO

The calculation of the matching coefficients for the transversity distri-
bution is straightforward from the unpolarized one done in [11]. The main
difference is the non-mixing with gluons. This calculation stands as an ex-
plicit evidence that the factorization theorems of spin-dependent TMD dis-
tributions work properly. The evolution equations for spin-dependent TMD
distributions and for the coefficients that result from its matching onto inte-
grated PDFs have the same form as the ones for the unpolarized TMD, see
e.g. [12].

In perturbation theory, the matching coefficients can be written as

δCf←f ′ (x,Lµ, lζ) =

∞∑
n=0

αns

n+1∑
k=0

n∑
l=0

Lkµ l
l
ζ δC

(n;k,l)
f←f ′ (x) , (8)

where αs = g2/(4π)2 and lζ = ln(µ2/ζ) are the rapidity logarithms. The
coefficients δC(n;k,l) with k+ l > 0 are fixed order-by-order with the help of
the renormalization group above-named. Thus, the only part that cannot
be calculated in this way are the δC(n;0,0) coefficients.

The results are quite lengthly and we omit them in these proceedings.
To see their explicit expressions see Eqs. (4.9), (4.10) (and Eqs. (6.9), (6.10)
for the fragmentation case) of [12]. One interesting feature of the NNLO
transversity matching coefficients is its relation with the unpolarized ones.
Both coefficients can be written as

C(2;0,0)(x) = P [1](x)F1(x) + F2(x) + δ(1− x)F3 , (9)

where P [1](x) is LO DGLAP kernel of the corresponding PDF. The func-
tion F1(x) and the constant F3 are exactly the same for unpolarized and
transversity cases. This behavior is expected because these parts are the
ones proportional to 1/(1−x) and δ(1−x) contributions, respectively. They
come from diagrams where the quarks interact with the Wilson lines and are
insensitive to the polarization structure of the operator. The only different
part is the non-singular (at x→ 1) function F2(x).

4. Matching of the pretzelosity distribution at NNLO

The calculation of the matching of the TMD pretzelosity distribution
over the integrated transversity PDF is similar to the one of the transversity
TMD distribution. The one-loop result was given in [18]
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δ⊥C [1]
q←q(x, b) = −4CFB

εΓ (−ε)x̄ε2 = 0 +O(ε) , (10)

where x̄ = 1 − x and B = b2/4. We see that the result is ε-suppressed, as
we anticipated before.

To calculate the matching coefficient at NNLO, it is interesting to orga-
nize the result of the sum of the diagrams by different color factors

δ⊥Φ
[2]
f←f ′ = C2

FAF + CF

(
CF −

CA
2

)
AFA +

CFCA
2

AA + CFNfAN , (11)

because we can see major cancellations between them, taking into account
that AFA = AA + O(ε), AN = O(ε). So, the renormalized pretzelosity
TMDPDF depends only on C2

F color factor. This remaining term is canceled
in the matching equation for pretzelosity

δ⊥C [2]
q←q(x, b) = h

[2]
1T,q←q(x, b)−

[
δ⊥C [1]

q←q(b)⊗ δf [1]
q←q

]
(x) (12)

because the convolution term is the same as for the result of the renormalized
pretzelosity. Thus,

δ⊥C
[2]
q←f (x, b) = 0 +O(ε) , (13)

where f = q, q̄.

5. Conclusions

In this article, the matching of the two transversely polarized TMD dis-
tributions at leading twist is shown. These results give us the first calculation
of a polarized TMD (transversity) at the same level of accuracy of the unpo-
larized TMD distribution. As is discussed in [4], increasing the perturbative
precision in the matching coefficients allows to decrease the theoretical er-
rors and gives us more accurate information of the non-perturbative contri-
butions. The improvement in the theory for polarized distributions shown
in this article opens the path to phenomenological analyses with the same
level of precision that the obtained for unpolarized TMD.

For another part, this calculation checks explicitly the spin independence
of the TMD factorization theorems up to NNLO. Further on, this calculation
stands also for a check of the spin independence of the double-scale evolution
of the TMD distributions.

For the pretzelosity, an unexpected null result is found up to two-loop
level. Some signs to stand that the twist-2 matching of this distribution is
zero at all orders in perturbation theory are encountered. However, these
statements are not a complete demonstration for the nullity of this matching
at all orders. We conjecture that the twist-2 matching of the pretzelosity
function is zero at all orders and only the first non-zero matching appears
at the twist-4 level.
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