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We evaluate the nucleon spin decomposition to quarks and gluons con-
tributions using lattice QCD. One ensemble of maximally twisted mass
fermions with two degenerate light quarks tuned to reproduce the physical
value of the pion mass has been analyzed. State-of-the-art techniques have
been employed to increase the statistical accuracy of sea quarks contribu-
tions. Both spin and momentum sum rules are found to be satisfied within
the statistical and systematic uncertainty.
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1. Introduction

The nucleon spin puzzle was triggered in 1987 when the European Muon
Collaboration [1] measured a very small contribution, compatible with zero,
from the quarks to the nucleon spin. Recent experiments measure about
30% contribution [2] to the nucleon spin from quarks and there are indica-
tions for a significant gluon contribution [3]. Since the spin of the nucleon
should emerge from the quark–gluon and the gluon–gluon interactions, a
first principles calculation is highly desirable. In this work, we perform
lattice QCD simulations using maximally twisted mass fermions with two
dynamical mass degenerate light quarks with masses tuned to reproduce
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the physical pion mass. On the lattice, the contribution of the valence
quarks has been measured in high precision but a complete decomposition
of the nucleon should include also disconnected contributions from the sea
quarks and the gluons. Disconnected diagrams are typically noisy because
are susceptible to vacuum fluctuations, therefore, special techniques should
be employed in combination with a large statistics to tame the error leading
to an increased computational cost. With the help of recent algorithmic de-
velopments combined with the computational power provided by the GPUs
enabled us to accurately determine all the contributions involved in order
to provide a complete picture of both spin and momentum decomposition.
For other studies, the interested reader is referred to Ref. [4].

2. Extraction of the nucleon matrix elements on the lattice

2.1. Nucleon matrix elements

In the literature, two approaches have been suggested to decompose the
nucleon spin. One gauge-invariant way introduced by Ji [5], namely

JN =
∑
q

Jq + Jg =
∑
q

(
1
2∆Σq + Lq

)
+ Jg , (1)

where 1
2∆Σq is the intrinsic quark spin, Lq is the quark orbital angular

momentum and Jg is the total gluon angular momentum. In Ji’s decompo-
sition, the gluon contribution cannot decompose further. In contrast, the
Jaffer–Manohar decomposition [6] given as

JN =
∑
q

(
1
2∆Σq + Lq

)
+ Lg + ∆G (2)

decomposes the gluon contribution to an orbital angular momentum Lg and
intrinsic polarization ∆G. Note that Lq 6= Lq, thus the quark orbital angular
momentum is different in the two decompositions. For the physical meaning
and the gauge invariance issue of the Jaffe–Manohar decomposition, see
Ref. [7].

In this study, we employ Ji’s decomposition. The intrinsic quark spin
is the axial charge of the nucleon, up to a factor of 2, which can be com-
puted directly on the lattice from the nucleon axial-vector matrix element.
The total quark contribution Jq is expressed through the Generalized Form
Factors (GFFs) at zero momentum transfer as Jq = 1

2 (Aq20(0) +Bq
20(0)),

where Aq20(Q
2) and Bq

20(Q
2) are extracted from the nucleon matrix element

of the vector one-derivative operator. For the computation of the gluon
contribution Jg, we employ the gluon operator [8] Oµνg = 2Tr [GµσGνσ]
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with Gµν the field strength tensor. We take the traceless combination giv-
ing the scalar operator OB = O44 − 1

3Ojj , and from the matrix element
〈N |OB|N〉 = −2mN 〈x〉g, one can extract Ag20(0) = 〈x〉g. To compute
Jg = 1

2 [Ag20(0) +Bg
20(0)], Bg

20(0) is also needed, but assuming that spin
and momentum sums are satisfied, one can relate B20 of gluons to quarks
such as

∑
q B

q
20(0) = −Bg

20(0).

2.2. Correlation functions

In order to extract the nucleon matrix elements from the correlation
functions, we analyze one gauge ensemble of two mass degenerate twisted
mass fermions with a clover term with mass tuned in order to approximately
reproduce the physical pion mass. The lattice volume is 483×96 with lattice
spacing α = 0.0938(3) fm [9]. For the strange quark, we use Osterwalder–
Seiler fermions where the strange quark mass is tuned to reproduce the
physical Ω− mass.

The three-point correlation function receives contribution from two types
of diagrams. In the connected diagram, the insertion operator couples di-
rectly to a valence quark, whereas in the disconnected diagram, the insertion
operator couples to a sea quark, and the coupling to the nucleon propagator
is mediated through the gauge background. The connected diagram can be
computed using standard approaches, such as sequential inversions through
the sink, giving the dominant contribution. The computation of the discon-
nected diagram is significantly more complicated because, on the one hand,
it involves the quark loop which is notoriously expensive to compute and, on
the other, needs the nucleon propagator for large number of source positions
to control the statistical error.

Since the simulation is performed directly on a physical ensemble, con-
ventional solvers such as the conjugate gradient (CG) method face a critical
slow down as the condition number of the Dirac operator increases dramat-
ically. In order to overcome this delicate point, we deflate the lowest 500
modes of the square twisted mass operator to speedup the inversions. For
the estimation of the quark loop, we follow stochastic approaches such as
the one-end trick which provides an increased signal-to-noise ratio. For the
strange quark, we also employ the Truncated Solver Method (TSM) [10].
For the computation of the gluon loops, we perform stout smearing on the
gauge links of the gluon operator to smooth UV fluctuations. The nucleon
propagator has been computed for 100 source positions to control statistical
uncertainty in the disconnected diagrams.

We renormalize our lattice results using the RI’-MOM scheme and sub-
tract lattice artifacts using lattice perturbation theory. For details, see
Ref. [11]. The renormalization of the gluon operator is carried out perturba-
tively as explained in Ref. [8]. Results are given in MS-scheme at 2 GeV.
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3. Results

Our results for the intrinsic quark spin of the up, down and strange ones
are shown in Fig. 1 as a function of the pion mass, comparing with other
studies. Focusing on the simulation directly at the physical point, we observe
that the contribution of the disconnected diagrams is crucial in order to find
agreement with the experimental results. An additional point that one can
make from Fig. 1 is that there is not a significant pion mass dependence.
From Fig. 1, we can also conclude that quenching effects are negligible since
Nf = 2 and Nf = 2+1+1 are in perfect agreement.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
m  [GeV]

0.03

0.02

0.01

Strange

Hybrid, Nf=2+1, a=0.124 fm

Clover: f=2+1, a=0.074 fm Nf=2, a=0.073 fmN

0.20

0.15

0.10

0.05

1 2
q

Down
Nf=2: a=0.094 fm a=0.088 fm a=0.071 fm a=0.056 fm

0.3

0.4

0.5 Up

Nf=2+1+1: a=0.083 fm a=0.06 fm

Hybrid, Nf=2+1+1: a=0.090 fma=0.060 fm

TMF, 

TMF, 

Fig. 1. (Color online) The up (upper), down (center) and strange (lower) quark in-
trinsic spin contributions to the nucleon spin versus the pion mass. Open symbols
show results with only connected contributions, while filled symbols results includ-
ing disconnected ones. Gray/red diamonds are the results of this work. Results
from other studies are also presented.

The results for the nucleon spin and momentum decomposition are shown
in Fig. 2 [8]. The disconnected diagrams have a significant contribution,
and we find that both the spin and momentum sums are satisfied within the
errors. Results are summarized in Table I.
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Fig. 2. Left: Nucleon spin decomposition. Right: Nucleon momentum decomposi-
tion. The striped segments show valence quark contributions (connected) and the
solid segments the sea quark and gluon contributions (disconnected). Results are
given in MS scheme at 2 GeV.

TABLE I

Our results for the intrinsic spin ( 12∆Σ), angular (L) and total (J) momentum
contributions to the nucleon spin and to the nucleon momentum 〈x〉, from quarks
and gluons, where the first error is statistical and the second a systematic due to
excited states.

1
2∆Σ J L 〈x〉

u 0.415(13)(2) 0.308(30)(24) −0.107(32)(24) 0.453(57)(48)
d −0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s −0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g — 0.133(11)(14) — 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

4. Conclusion

This study presents a complete calculation of the nucleon spin and mo-
mentum based on Ji’s decomposition. One Nf = 2 twisted mass ensem-
ble at the physical point has been analyzed. The sea quarks contributions
are evaluated using state-of-the-art techniques with unprecedented accuracy.
For the intrinsic quark spin we find 1

2∆Σu+d+s = 0.201(17)(5) for the nu-
cleon spin JN = 0.541(62)(49) and for the momentum sum

∑
q〈x〉q + 〈x〉g =

1.07(12)(10).



866 C. Alexandrou et al.

REFERENCES

[1] J. Ashman et al. [European Muon Collaboration], Phys. Lett. B 206, 364
(1988).

[2] C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, Rev. Mod. Phys. 85, 655
(2013) [arXiv:1209.2803 [hep-ph]].

[3] I. Nakagawa, [PHENIX Collaboration], EPJ Web Conf. 141, 03006 (2017).
[4] Y.-B. Yang et al., Phys. Rev. D 98, 074506 (2018)

[arXiv:1805.00531 [hep-lat]].
[5] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997) [arXiv:hep-ph/9603249].
[6] R.L. Jaffe, A. Manohar, Nucl. Phys. B 337, 509 (1990).
[7] M. Wakamatsu, Phys. Rev. D 94, 056004 (2016)

[arXiv:1607.04018 [hep-ph]].
[8] C. Alexandrou et al., Phys. Rev. D 96, 054503 (2017)

[arXiv:1611.06901 [hep-lat]].
[9] A. Abdel-Rehim et al. [ETM Collaboration], Phys. Rev. D 95, 094515 (2017)

[arXiv:1507.05068 [hep-lat]].
[10] G.S. Bali, S. Collins, A. Schafer, Comput. Phys. Commun. 181, 1570 (2010)

[arXiv:0910.3970 [hep-lat]].
[11] C. Alexandrou et al., Phys. Rev. D 96, 054507 (2017)

[arXiv:1705.03399 [hep-lat]].

http://dx.doi.org/10.1016/0370-2693(88)91523-7
http://dx.doi.org/10.1016/0370-2693(88)91523-7
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1051/epjconf/201714103006
http://dx.doi.org/10.1103/PhysRevD.98.074506
http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1016/0550-3213(90)90506-9
http://dx.doi.org/10.1103/PhysRevD.94.056004
http://dx.doi.org/10.1103/PhysRevD.96.054503
http://dx.doi.org/10.1103/PhysRevD.95.094515
http://dx.doi.org/10.1016/j.cpc.2010.05.008
http://dx.doi.org/10.1103/PhysRevD.96.054507

	1 Introduction
	2 Extraction of the nucleon matrix elements on the lattice
	2.1 Nucleon matrix elements
	2.2 Correlation functions

	3 Results
	4 Conclusion

