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There has been a revived interest in small-x resummation in recent
times. The main motivation was its success in describing small-x HERA
data without the inclusion of non-perturbative corrections. In this contri-
bution, I will review the recent developments in the field.
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Let us consider an observable σ, e.g. a DIS structure function, within
the context of the collinear QCD factorization theorem. It can be in general
written as
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where Ci are perturbative coefficient functions and fi are parton distribution
functions (PDFs) satisfying the DGLAP evolution equation
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where Pij are splitting functions and the sums extend over all partons. It
is well-known that perturbative quantities computed in QCD may contain
logarithmic enhancements in some regions. This is, for instance, the case of
αn
s
1
x log

k 1
x terms, which appear in both splitting and coefficient functions in

the singlet sector, and become large at small-x, spoiling the perturbativity
of the αs expansion. Resumming the small-x logarithms cures the instability
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of the fixed-order perturbative results. Small-x resummation is based on the
interplay of the previous two equations with the kT factorization theorem
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where Ci are coefficient functions with off-shell initial-state partons (with
off-shellness given by k2T), and Fi are unintegrated kT-dependent PDFs. In
the small-x limit, the unintegrated gluon PDF is related to the integrated
integrated PDF by
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)
= R d

dk2T
xfg
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x, k2T

)
, (4)

where R is a scheme-dependent function. In the variant of the MS scheme
usually adopted in small-x resummation, denoted Q0MS scheme, R = 1.
The unintegrated gluon PDF satisfies the BFKL evolution equation
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where K is the BFKL kernel. Using Eq. (4) to translate the BFKL equation
into an equation for the integrated PDF, it is then possible to require con-
sistency between its solution and that of the DGLAP evolution Eq. (2) to
find constraints between the splitting functions and the BFKL kernel, called
duality relation, that allow to resum the small-x logarithms in splitting func-
tions. Practically, the procedure is more complicated due to the perturbative
instability of the BFKL kernel, that requires a number of operations to be
performed before obtaining a perturbatively stable result. On top of this,
the resummation of a class of subleading contributions originating from the
running of the strong coupling turns out to be very important, as it changes
the nature of the small-x behaviour. Resummation at next-to-leading loga-
rithmic (NLL) level matched to fixed next-to-leading order (NLO) has been
achieved by various groups (see e.g. [1–3]).

In recent Refs. [4–7], the formalism for small-x resummation, in the ap-
proach of Altarelli–Ball–Forte (ABF), has been extended in many respects.
On top of (several) technical improvements, the main novelties that have
been introduced are:

— matching the resummation to NNLO, to be able to construct DGLAP
evolution at NNLO+NLL;
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— making a prediction of the (yet unknown [8, 9]) N3LO splitting func-
tions at small x, and preparing all the ingredients to be able to match
NLL resummation to N3LO once available;

— providing an uncertainty on resummed results from subleading loga-
rithmic contributions;

— releasing a public code, HELL [10], that implements the resummation
and delivers resummed results for applications.

The first item of the list is particularly important, because the instability
induced by small-x logarithms gets larger with increasing the order. This
is seen in Fig. 1 (left), where the Pgg and Pqg splitting functions are shown
at a low scale: the log 1

x term at NNLO starts to grow for x . 10−2 and
invalidate the perturbative expansion. Once resummation is turned on, the
behaviour changes substantially, and the NNLO+NLL result deviates sig-
nificantly from the fixed-order result. A stronger effect is expected when
matching the resummation to N3LO, because at this order, extra powers
of the log appear. A prediction (based on the expansion of the resummed
result) is shown in Fig. 1 (right). The perturbative instability is appar-
ent, especially when going to very small values of x. However, subleading
logarithmic contributions which cannot be fixed by NLL resummation are
potentially sizeable (difference between “N3LO approx” and “N3LO asympt”
curves in the plot), so this prediction carries a huge uncertainty and it may
only be useful combined with other information on the N3LO result [8, 9].
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Fig. 1. Left: the Pgg and Pqg splitting functions at LO, NLO, NNLO and
NNLO+NLL for αs = 0.2, nf = 4. Right: N3LO prediction for Pgg.

The resummation of coefficient functions is based on the direct compar-
ison of the collinear and kT-factorization formulae in Eqs. (1), (3), making
use of a generalization of the relation Eq. (4). Moving to the Mellin N space,
and introducing the DGLAP evolution factors Uij(N,µ

2, µ20) from a scale µ0
to a scale µ, we can rewrite Eq. (4) generalized to all flavours as
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so that by comparison between the two factorization formulae, we get
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(7)
which encodes the small-x resummation provided the DGLAP evolution fac-
tors are themselves computed with resummed splitting functions. This for-
mulation of the resummation (introduced for the first time in Ref. [4]) is
equivalent to previous approaches [2, 11, 12], but it is very convenient from
a numerical point of view, and it allows for a simpler implementation of
new processes in the resummation code HELL [10]. Thanks to this new for-
mulation, there have been a number of developments also in the context of
coefficient functions resummation [5, 7]:

— resummation of all neutral- and charged-current DIS structure func-
tions F2, FL and F3, both in the massless limit and including mass
effects;

— implementation of a variable flavour number scheme at small x in MS-
like schemes;

— resummation of heavy-quark matching conditions which give the initial
conditions for the PDFs when transitioning from a scheme with nf
active flavours to a scheme with nf + 1 active flavours;

— resummation of LHC observables (only Higgs production in gluon fu-
sion so far, Drell–Yan is under investigation).

The third item turns out to be particularly interesting. Indeed, the transi-
tion from the nf to the nf + 1 scheme happens at a (unphysical) matching
scale, that can be varied to assess the impact of unknown higher order con-
tributions to the matching procedure. Once resummation is included in the
matching and in DGLAP evolution, the matching scale uncertainty is drasti-
cally reduced at small x, thereby showing a stabilization of the perturbative
expansion. This is shown for the charm PDF in Fig. 2. The gap between the
various curves at large scale (i.e. in the nf = 4 scheme) almost disappears
once resummation is included.

Thanks to all these recent developments, and importantly to the avail-
ability of the public code HELL [10] that delivers resummed splitting and
coefficient functions, it has been possible to perform two PDF fits including
small-x resummation, one in the context of the NNPDF methodology [14]
and the other one using the xFitter toolkit [13]. The striking effect of small-x
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Fig. 2. Fixed NNLO (left) and resummed NNLO+NLL (right) charm PDF gen-
erated perturbatively at different charm matching scales µc ≡ κcmc, with mc the
charm mass and κc = 1.12, 1.5, 2, 2.5, at a small value of x = 10−4 (figure taken
from Ref. [13]).

resummation is a dramatic improvement in the description of the low-x
low-Q2 HERA data, leading to a significantly different gluon (and quark-
singlet) PDF at NNLO+NLL with respect to the NNLO fit at small x.

To appreciate the importance of such effect, we show in Fig. 3 the com-
parison of the fixed-order and resummed predictions for the production of
Higgs in gluon fusion at hadron colliders as a function of the collider en-
ergy [7, 16]. The effect of resummation (mostly coming from the use of
resummed PDFs) is small and compatible within PDF uncertainty with
the fixed-order result up to approximately the current LHC energy. For
higher energies, the effect of resummation is a significant increase of the
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Fig. 3. Ratio of the resummed prediction of the Higgs cross section at N3LO+LL
to the fixed N3LO result. In both plots, the resummed PDF set is the one from
Ref. [14], while the fixed order (NNLO) set used for the fixed-order prediction
is either the baseline of the resummed fit [14] (left plot), or the state-of-the-art
NNPDF3.1 set of Ref. [15] (right plot).
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cross section, rising with the energy, and reaching up to ∼ +10% at a fu-
ture circular collider of 100 TeV. This conclusion holds unchanged if using
a different NNLO PDF set for the comparison, for instance the state-of-the-
art NNPDF3.1 set of Ref. [15] (right plot), which has been fitted using a
larger dataset. Subleading logarithmic contributions may have sizeable ef-
fects [7] and reduce (or enhance) the overall effect of resummation, but the
significance of the effect is likely independent of them.

This work is supported by the Marie Skłodowska-Curie grant HiPPiE@LHC,
number 746159.
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