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The forward Drell–Yan (DY) lepton-pair production together with a
backward jet is proposed as a new way to study the BFKL effects due to a
large rapidity gap between the two systems. The predictions for quantities
to be measured are computed using the leading order DY impact factors
and the BFKL kernel with a consistency condition which takes into account
an important part of the next-to-leading order corrections.
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1. Introduction

The Drell–Yan lepton-pair production [1] is one of the most important
processes which allow to study the QCD structure of the colliding hadrons.
Of particular importance in this presentation are the high-energy QCD
effects described by the Balitsky–Fadin–Kuraev–Lipatov (BFKL) formal-
ism [2] which is complementary to the commonly used collinear resumma-
tion schemes. A classical process to study the BFKL effects in hadronic
collisions, proposed by Mueller and Navelet (MN) [3], is a production of two
jets with similar transverse momenta but separated by a large rapidity in-
terval. In particular, it was proposed to look at the azimuthal decorrelation
in the MN jets [4, 5]. Such studies were performed experimentally at the
Fermilab [6, 7] and the LHC [8, 9] and analyzed theoretically in [10, 11]
using the full NLO jet impact factors and NLL BFKL kernels.
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We propose to replace one of the MN jets by a forward Drell–Yan lepton
pair, which has several advantages. (i) The experimental precision of DY
measurements is usually very high. (ii) This process offers a broader range
of parameters which may be scanned like the lepton-pair mass M or its
transverse momentum q⊥. (iii) The lepton-pair angular distribution allows
to determine the DY structure functions [12] which show sensitivity to the
underlying BFKL dynamics. (iv) Particularly interesting is the Lam–Tung
combination of the DY structure functions [13].

The results presented in the forthcoming are based on an extended ver-
sion of the paper [14].

2. Kinematics and cross sections

In Fig. 1, we show the relevant kinematic variables. The most important
is the large rapidity distance ∆YγJ between the forward DY boson q and the
backward jet pJ to be measured experimentally. The rapidity distance ∆YP

is purely theoretical since it is an argument of the BFKL kernel, related to
∆YγJ through kinematics. The DY+jet cross section reads
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are the differential DY structure functions for the four polarizations λ = L,
T, LT, TT; Φ(λ) are the DY impact factors and K is the BFKL kernel with
kinematic constraint, given by the Fourier decomposition in the azimuthal
angle φ between ~k1⊥ and ~k2⊥
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More details on the choice of K is given in [14].
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Fig. 1. Kinematic variables relevant for the DY+jet production.

In the forthcoming presentation, we will show the results for the helicity-
inclusive cross section (1) integrated over the full spherical angle Ω
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16π
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+
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2
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)
. (4)

3. Azimuthal angle dependence

The first quantity to study is the dependence of (4) on the azimuthal
angle φγJ between the photon transverse momentum ~q⊥ and jet momentum
~pJ⊥, see Fig. 2 where the normalized formula (4) is shown as a function of
φγJ. The BFKL effects in the DY+jet case (left) lead to stronger decor-
relation in the azimuthal angle in comparison to the LO-Born (two gluon)
exchange and also to the MN jet case (right).

In Fig. 3, we show the comparison between the DY+jet (solid lines) and
MN jet (dashed lines) processes in terms of the mean cosine

〈cos(nφγJ)〉 =

∫ 2π
0 dφγJ

dσDY+j

dMd∆YγJdq⊥ dpJ⊥dφγJ
cos(nφγJ)∫ 2π

0 dφγJ
dσDY+j

dMd∆YγJdq⊥ dpJ⊥dφγJ

(5)

for n = 1 and n = 2 as a function of the rapidity difference ∆YγJ. In both
cases, we see stronger decorrelation for the DY+jet production than for the
MN jet case. Note that the mean cosine values equal one for the MN jet
process in the Born approximation when both jets have the same transverse
momentum, which gives the strongest possible correlation.
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Fig. 2. The azimuthal angle dependence of the normalized helicity cross sections for
the DY+jet (right) and MN jets (left) processes for q⊥ = 25 GeV, pJ⊥ = 30 GeV,
M = 35 GeV and ∆YγJ = ∆YIJ = 7.
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Fig. 3. The mean cosine 〈cos(nφγJ)〉 as a function of rapidity difference ∆YγJ for
n = 1 (left) and n = 2 (right) for the DY+jet (solid lines) and MN jets (dashed
lines) processes with q⊥ = pI⊥ = 25 GeV, pJ⊥ = 30 GeV and M = 35 GeV.

4. Angular coefficients

In the inclusive DY process, it is useful to define normalized structure
functions. We follow this approach and define for the DY+jet process the
following coefficients:

A0 =
dσL

dσT + dσL/2
, A1 =

dσLT

dσT + dσL/2
, A2 =

2dσTT

dσT + dσL/2
. (6)

Lam and Tung proved the following relation valid at the LO and NLO for
the DY qg channel in the collinear leading twist approximation [1, 13]:

dσL − 2dσTT = 0 or A0 −A2 = 0 . (7)
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As it was shown in [15], the combination A0 − A2 is sensitive to partons’
transverse momenta. In Fig. 4, we show this combination as a function of
the photon-jet azimuthal angle φγJ. We see a dramatic difference between
the full BFKL result, which is almost independent of the angle, and the
LO-Born approximation (two gluon exchange) in which we find a strong
dependence on the angle. A similar pattern can be found for the coefficients
A0, A1 and A2 separately. This shows that for leptons’ angular coefficients,
the decorrelation coming from the BFKL emissions is almost complete.
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Fig. 4. The Lam–Tung difference of angular coefficients A0 −A2 as a function the
azimuthal photon-jet angle φγJ for q⊥ = 25 GeV (left) and q⊥ = 60 GeV (right)
while pJ⊥ = 30 GeV, ∆YγJ = 7 and M = 35 GeV.

5. Conclusions

We proposed a new process to study the BFKL dynamics in high-energy
hadronic collisions — the Drell–Yan plus jet production. In this process,
the DY photon with large rapidity difference with respect to the backward
jet should be tagged through the lepton pair. The presented numerical
results show a significant angular decorrelation with respect to the Born
approximation for the BFKL kernel. The found decorrelation is also stronger
than for the Mueller–Navelet jets due to more complicated final state with
one more particle, being the DY boson. We also presented numerical results
on the angular coefficients of the DY lepton pair which provide an additional
experimental opportunity to test the effect of the BFKL dynamics in the
proposed process.
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