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Using the formalism of the light-cone wave function in perturbative
QCD together with the hybrid factorization, we compute the cross section
for three particle production at forward rapidities in proton–nucleus colli-
sions. In this picture, the three produced partons — a quark accompanied
by a gluon pair, or two quarks plus one antiquark — are all generated
via one or two successive splittings of a quark from the incoming proton,
that was originally collinear with the latter. The three partons are put
on-shell by their scattering off the nuclear target, described as the Lorentz-
contracted shockwave. We explicitly compute the three-parton Fock space
components of the light-cone wave function of the incoming quark and its
outgoing state, which encodes the information both on the evolution in time
as well as the scattering process. This outgoing state is also an ingredient
for other interesting calculations, like the next-to-leading order correction
to the cross section for the production of a pair of jets.
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1. Introduction to gluon saturation

Particle production in proton–nucleus collisions at forward rapidities (in
the proton fragmentation region) represents an important source of infor-
mation about the small-x part of the nuclear wavefunction, where gluon
occupation numbers are high and non-linear effects such as gluon saturation
and multiple scattering are expected to be important. Within perturbative
QCD, the corresponding cross sections can be computed using the Colour
Glass Condensate (CGC) effective theory [1], which is currently known to
next-to-leading order (NLO) accuracy (at least for the high-energy evolution
and for specific scattering processes), together with the so-called “hybrid fac-
torization” [2]. The physical picture underlying this factorization is that the
∗ Presented at the Diffraction and Low-x 2018 Workshop, August 26–September 1,
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“forward” jets (or hadrons) observed in the final state are generally produced
via the fragmentation of a single collinear parton from the incoming proton,
which carries a large fraction xp ∼ O(1) of the longitudinal momentum of
the proton and here is assumed to be a quark.

Using this approach, one has so far computed the cross section for single
inclusive hadron production, first to leading-order (LO) accuracy [3, 4] and
then to NLO [5–7], and that for dijet production only at LO [8]. The results
thus obtained compare quite well with the phenomenology, for both the
single inclusive spectra and the dijet production.

The aim of these proceedings is to explain how to compute multi-particle
production cross sections in proton–nucleus collisions at forward rapidities,
that is, in the fragmentation region of the proton projectile. Our dominant
contribution comes from the process where a valence quark from the pro-
ton, possibly accompanied by its radiation products, scatters off the gluon
distribution in the nucleus and then emerges in the final state. We shall
compute this process within perturbative QCD so, in particular, we shall
ignore confinement: our “final state” will be built with partons (quarks and
gluons) rather than physical hadrons.

2. The outgoing state formalism

In order to be able to describe a scattering process, we should understand
both how the incoming state evolves with time, and how it interacts with the
target. The state which encodes the information about the time evolution
of an initial bare quark state |qαλ (q+, q)〉 (α and λ denote the colour and
polarization indices, while q is its momenta) is given by |qαλ (q+, q)〉in ≡
U(0, −∞) |qαλ (q+, q)〉, where U is a unitary evolution operator, defined by

U(t, t0) = T exp

−i
t∫

t0

dt1 HI(t1)

 . (1)

At leading order, as the incoming bare quark WF evolves with time, it can
emit a gluon (we treat the kinematics exactly, assuming no approximation
for the emission vertices). The reader can find the result for the LO incoming
bare quark WF as well as the cross section for the forward dijet production
in [8]. As a result of the collision, the partonic system also acquires a total
transverse momentum of the order of the saturation momentum in the nu-
cleus. In the high-energy regime of interest, the effects of multiple scattering
can be resumed to all orders by using the eikonal approximation (a parton
from the projectile does not get deflected, but merely acquires a colour ro-
tation). This amounts to associating a Wilson line [9] built with the colour
field of the target to each parton from the projectile (the operator which



Multi-particle Production in Proton–Nucleus Collisions at High Energy 905

assigns the Wilson lines for each parton is denoted here by Ŝ). While at
leading order the procedure to insert the shockwave is straightforward, it
cannot be easily generalized for higher orders. An elegant and systematical
way to generate at all the different contributions from the possible loca-
tions in which the interaction may occur is given by the expression for the
outgoing state

|qαλ 〉out ≡ U(∞, 0) Ŝ U(0, −∞) |qαλ 〉 = |qαλ 〉+ |qαλ 〉
(g)
out + |qαλ 〉

(g2)
out + . . . (2)

Since here we are looking for the situation in which we have at least three
partons at the final state, we have to compute the outgoing state up to
order g2

|qαλ 〉
(g)
out = −

∑
i 6=f
|f〉 〈f |S| i〉 〈i |Hint| in〉

Ei − Ein
+
∑
i 6=f
|f〉 〈f |Hint| i〉

Ef − Ei
〈i |S| in〉 , (3)

where Hint denotes the interaction part of the QCD Hamiltonian in light-
cone gauge, and we should sum over all the possible states |i〉, |j〉, and |f〉, of
our Fock space (the Fock space here consists of the quark state, quark and a
gluon state, quark and two gluons state, and two quarks and an anti-quark).
The respective energies for the states mentioned are denoted by Ei, Ej , Ef ,
and the state |in〉 denotes the incoming state (which in our case is a bare
quark state). After summing over the different states, it can be seen that
the state in Eq. (2) has the following structure:

|qαλ 〉
(g2)
out ' ẐNLO |qαλ 〉+ |ψαλ 〉qg + |ψαλ 〉qqq̄ + |ψαλ 〉qgg , (4)

where ẐNLO accounts for the normalization of the WF and the partons pro-
duced at the final state appear as a subscript.

2.1. Computing the outgoing state

As mentioned in the introduction, our interest is to compute the leading-
order cross section for producing three partons in the final state. In order
to demonstrate the method, it is enough to focus on the case in which
two quarks and an anti-quark are produced at the final state (along with
that contribution, we can also have one quark together with two additional
gluons that will not be discussed here). To lowest order in perturbation
theory, the incoming state built with these three (bare) partons involves
either one or two emission vertices, which we denote here as regular and
instantaneous emission (in the instantaneous channel an intermediate gluon
is not created, and the quark–anti-quark pair is emitted directly from the



906 Y. Mulian

incoming state.) The total contribution is a sum of the two contributions,
|ψαλ 〉qqq̄ ≡ |ψ

α
λ 〉

inst
qqq̄ + |ψαλ 〉

reg
qqq̄. In what follows, we shall deal only with the

contribution from the regular emission. The contribution from this channel
to the outgoing state in Eq. (2) is given by the following expression [10]:

∣∣ψαλ (q+, w)
〉reg

qqq̄
= −

∫
x,z,z′

1∫
0

dϑ dξ
g2ϕilλ2λ3(ξ)φijλ1λ(ϑ)Z l

(
Xj + ξZj

)
q+

16π3 (X + ξZ)2 Z2

×δ(2) (w −C)
[
Θ1 V

%δ(z′) taδε V
†ερ(z)V σβ(x) taβα + Θ2 t

a
%ρ t

a
σβ V

βα(w)

− tb%ρ V σβ(x)U ba(y) taβα

] ∣∣∣q̄ ρλ3((1− ξ)ϑ, z) q%λ2(ξϑ, z′) qσλ1(1− ϑ,x)
〉
, (5)

where x, and z′ denote the transverse coordinates of two final quarks, while
z is the transverse coordinate of the anti-quark. The transverse position of
the intermediate gluon y, and the corresponding position w of the incoming
quarks are given by

y ≡ ξz′ + (1− ξ)z ; w = (1− ϑ)x + ξϑz′ + (1− ξ)ϑz . (6)

For compactness, we also define X ≡ x − z and Z ≡ z − z′. Uab(x) and
V αβ(x) are Wilson lines in the adjoint and fundamental representations, and

Θ1 ≡
(1− ϑ) (X + ξZ)2

(1− ϑ) (X + ξZ)2 + ξ(1− ξ)Z2
; Θ2 ≡ 1−Θ1 . (7)

3. The trijet cross section

The cross section for partons–nucleus scattering is obtained by averaging
number density operators (defined below) over all the colour field configura-
tions in the target with the CGC weight function [1]. In order to pass from
the partonic cross section to a cross section which involves hadrons, it must
be convoluted with the quark distribution function of the proton and the
fragmentation functions for partons fragmenting into hadrons, or jets.

Within the hybrid factorization [2], the cross section for producing three
jets at forward rapidities in proton–nucleus collisions and to leading order
in pQCD is simply obtained by convoluting the respective partonic cross
section with the proton–parton distribution functions for the partons which
have initiated the process

dσpA→3jet+X

d3q1 d3q2 d3q3
=

∫
dxp q

(
xp, µ

2
)( dσqA→qgg+X

d3q1 d3q2 d3q3
+

dσqA→qqq̄+X

d3q1 d3q2 d3q3

)
. (8)
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Here, q1, q2, q3 are the momenta of the measured partons, q(xp, µ2) is the
quark distribution function of the proton evaluated for a longitudinal mo-
mentum fraction xp = q+/Q+ (with Q+ the proton longitudinal momentum)
and for a transverse (or virtuality) scale µ2. The value of xp is actually fixed
by the δ function implicit in the partonic cross sections which expresses the
conservation of longitudinal momentum (q+ = q+

1 + q+
2 + q+

3 ).
The three-parton cross sections in Eq. (8) are in turn computed as expec-

tation values over the outgoing-state of the product of three number-density
Fock space operators for bare partons

dσqA→qqq̄+X

d3q1 d3q2 d3q3
=

∫
w,w̄ qqq̄ 〈ψαλ (q+, w̄)| N̂q(q1)N̂q(q2)N̂q̄(q3) |ψαλ (q+,w)〉qqq̄

2Nc L
,

(9)
where the number density operators for (bare) quarks, anti-quarks, and glu-
ons are given by N̂q(p) ≡ 1

(2π)3
bα†λ (p) bαλ(p) and N̂g(k) ≡ 1

(2π)3
aa†i (k) aai (k).

It should be mentioned that the factor 1/2Nc in Eq. (9) accounts for the
average over the colours and polarizations of the initial quark. The fac-
tor 1/L, with L denoting the a priori infinite extension of the longitudinal
axis, is needed to remove an ill-defined delta function expression for the
conservation of the longitudinal momentum. The gluons contribution to
the trijet cross section dσqA→qgg+X

d3q1 d3q2 d3q3
is given similarly by replacing the quark

and anti-quark number density operators by the corresponding gluonic ones.
The contribution of the channel qA → qqq̄ + X to the trijet cross section,
as given by Eq. (9), consists of four different parts. One of these parts
involves the creation of a gluon in the direct and conjugate amplitudes be-
fore and after the splitting to quark and anti-quark pair (denoted by “reg–
reg”), see Fig. 1. Another part involves the instantaneous creation of the
quark–anti-quark directly from the incoming quark (denoted by “inst–inst”).
The two remaining contributions correspond to the interference between
the regular and instantaneous emissions (denoted by “reg–inst” and “inst–
reg”). In order to express the result for the first term in the last equation,

Fig. 1. Three examples of diagrams which demonstrate the production of a quark–
anti-quark pair via an intermediate gluon in the direct and conjugate amplitudes.
In total, there are nine such contributions.
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one has to introduce two basic gauge-invariant operators, known as dipole
and baryon defined respectively by S (w̄, w) ≡ 1

Nc
tr
[
V †(w̄)V (w)

]
and

Q (x̄, x, z, z̄) ≡ 1
Nc

tr
[
V †(x̄)V (x)V †(z)V (z̄)

]
. After inserting the result

in Eq. (2) to the definition of the cross section (9), and retaining only the
large Nc limit contributions, the result can be expressed solely in terms of
the dipole and quadropole

dσqA→qqq̄+X

d3q1 d3q2 d3q3

∣∣∣∣
reg−reg

≡ α2
s CFNf

2(2π)10(q+)2
δ
(
q+ − q+

1 − q
+
2 − q

+
3

)
×

∫
x̄, z̄, z̄′,x,z,z′

e−iq1·(x−x̄)−iq2·(z−z̄)−iq3·(z′−z̄′)

×Kqqq̄

(
x̄, z̄, z̄′, x, z, z′

) [
Θ̄1Θ1Q

(
x̄, x, z′, z̄′

)
S(z̄, z)

− Θ̄1Q
(
x̄, x, y, z̄′

)
S(z̄, y)− Θ1Q(x̄, x, z′, ȳ)S(ȳ, z)

+Θ̄2Θ1 S(w̄, z)S(z′, x) + Θ̄1Θ2 S
(
x̄, z̄′

)
S(z̄, w)

]
+Q(x̄, x, y, ȳ)S(ȳ, y)− Θ̄2 S(w̄, x)S(x, y)

−Θ2 S(x̄, ȳ)S(ȳ, w) + Θ̄2Θ2S (w̄, w)
]

+
(
q+

1 ↔ q+
2 , q1 ↔ q2

)
. (10)
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