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In this contribution, we present a status report on the recent progress
towards an analysis of nuclear parton distribution functions (nPDFs) using
the NNPDF methodology. We discuss how the NNPDF fitting approach
can be extended to account for the dependence on the atomic mass num-
ber A, and introduce novel algorithms to improve the training of the neural
network parameters within the NNPDF framework. Finally, we present
preliminary results of an nPDF fit to neutral current deep-inelastic lepton—
nucleus scattering data, and demonstrate how one can validate the new
fitting methodology by means of closure tests.
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1. Introduction

Parton distribution functions (PDFs) are universal, process-independent
objects describing the longitudinal motion of quarks and gluons within
hadrons [1, 2|. Since PDFs are difficult to compute from first principles,
they are instead extracted from experimental data by means of a global
analysis in the framework of QCD collinear factorization theorems. Cur-
rently, the PDFs of nucleons bound within heavy nuclei (nPDFs) [3] are less
well-understood than their free-nucleon counterparts, due primarily to the
limited experimental constraints available.

This state of affairs is unfortunate, since the determination of nPDFs
is important to reveal the origin and properties of phenomena such as the
Fermi motion, the EMC effect, nuclear shadowing, and possible non-linear
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evolution effects in nuclei. In addition, nPDFs are key inputs for the interpre-
tation of heavy-ion collisions and the characterization of the Quark—Gluon
Plasma (QGP), as well as for high-energy astrophysics such as theoretical
predictions of neutrino—nucleus interaction cross sections [4].

Several groups have presented nPDF determinations in recent years. Two
of such analyses are EPPS16 [5], which fits a nuclear modification factor
with respect to the CT14 [6] proton baseline, and nCTEQ15 [7], which fits
directly the nPDF shape by mimicking the parameterization used in the
CTEQ proton fits [8]. This recent activity in global nPDF studies has been
largely prompted by the availability of proton—lead collision observables such
as dijet, D meson, or W and Z gauge boson production. As in the case of
proton PDFs, these measurements offer the potential of a greatly improved
understanding of nPDFs and their uncertainties.

2. Towards nNNPDF1.0

Following the NNPDF methodology [9-11] (see [12] for a summary),
we adopt here artificial neural networks (ANNs) as universal unbiased inter-
polants to parameterize the z and A dependence of the nPDFs. As an initial
study, we consider only observables from neutral current (NC) deep-inelastic
scattering (DIS) off heavy nuclei, which are assumed to be isoscalar.

The description of isoscalar nuclei observables in DIS below the Z-boson
pole requires the parametrisation of three independent nPDFs, which are
taken to be the quark singlet X the gluon g, and the quark non-singlet
octet Tg distributions. In this basis, for example, the NC DIS structure
function FQA is given by

F (2,Q%) = IS5 (2,Q3,Q%) © £ (2, A, Q})
+I5, (2,Q3,Q%) ® g (2, 4,QF) + g, (2, Q5,Q%) @ Ts (2, 4,Q3) , (1)

where the I factors encode both the hard-scattering coefficient functions
and the DGLAP evolution kernels. The nPDFs are then parametrised at an
initial scale denoted by )y, and depend both on the partonic momentum
fraction x and the mass number A.

Following Ref. [13], the convolutions in Eq. (1) can be reduced to a scalar
product by means of an expansion over a set of interpolating polynomials,
allowing us to write

nf ng

FQA ({L‘, Q2) = sz’i,a (l’,ZEa,QQ,Qg) q; (fl)a,A, Q%)) ) (2)

where I" stand for the precomputed FastKernel grids that contain all the
perturbative information relevant for the calculation of F3', and ¢;(x, A, Q3)
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represent the initial scale nPDF for the flavour ¢ in a given basis. Note
that in Eq. (2) only the values of the input PDFs at a finite n,-sized grid
are required to compute the structure functions, leading to a significant
improvement of the numerical computation with respect to the convolutions
in Eq. (1).

The three independent nPDFs that enter Eq. (2) are parametrised as:

— X(x,4,Q0) = (1 — 2)*22x P>NNg(z, A),
— g(z, A, Qo) = Ay(1 — x)O‘G:L“_ﬁgNNg(L A),
— Ty(z,A,Qo) = (1 - 2)*Tsz 5NN (2, A),

where NN; corresponds to the output of the ANN for a given flavor i. The
preprocessing exponents [14| o; and §; facilitate the training procedure and
can either be fitted or drawn at random from a range determined iteratively.
Furthermore, we fix the overall normalisation of the gluon nPDF

1 1
A, = 1—/2($,A, Qo)dx //g(:r,A, Qo)dx (3)
0 0

so that the momentum sum rule is satisfied. In general, this normalisation
is different for every value of A.

Concerning the input dataset, we consider here a similar set of nuclear
NC DIS measurements that were used by EPPS16 and nCTEQ15. In Fig. 1,
the kinematic coverage of the (x,@Q?) plane of the nuclear DIS data are
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Fig.1. The kinematic coverage in x and Q? of the NC DIS data included in this
work.
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shown. Here, the coverage in x is significantly reduced compared to the pro-
ton case (x > 1072 versus x > 107° respectively). Enlarging this kinematic
range to smaller values of = and higher values of Q? is possible by means of
the RHIC and LHC data on nucleon—nucleus collisions.

3. Neural network training

The underlying procedure for any optimisation problem, such as the
present one, can be summarized by

min C(f(w)), (4)

w

where C' is a cost function to minimize and f is the target function that
depends on a vector of parameters w. In our case, the target functions that
need to be determined from the data are the nPDFs parametrised by the
neural networks, while w represents the neural network weights and thresh-
olds. The cost function is defined here to be the x2, which measures the
agreement between the experimental data points D; and the corresponding
theoretical predictions 7T; of nuclear DIS observables

Ndat ] w)] — ; 2
i=1 g

where o; is the total experimental statistical and systematic uncertainties
added in quadrature.

There are different options that can be used to solve Eq. (4). Previous
NNPDF global fits have been based either in Genetic Algorithms (GAs)
or the Covariance Matrix Adaptation — Evolutionary Strategy (CMA-ES)
algorithms. Both methods require knowledge only on the local values of
the x? and not of its derivatives. Here, for the first time in the context
of NNPDF studies, we have implemented the method of gradient descent,
one of the most widely used minimization techniques in machine learning
applications. In this procedure, the parameters are shifted by an amount
proportional to the negative of the gradient of the cost function evaluated
at the current position in parameter space

2
n Ox (6)

Wi — Wi — )
Npar OW;

where w; is one of the np,, free parameters of the ANN and 7 is a hyper-
parameter of the algorithm known as the learning rate. In this work, the
gradients are computed numerically by means of automatic differentiation
using the TensorFlow library [15]. The updating process in Eq. (6) is then
iterated until a suitable set of convergence criteria is satisfied, for instance,
using look-back or early stopping with cross-validation.
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4. Preliminary results

The application of the NNPDF methodology to a QCD analysis of nu-
clear parton distributions can be validated by means of closure tests, as was
done in previous global fits of proton PDFs [11] and fragmentation func-
tions [16]. In these closure tests, pseudo-data is generated based on an
established theoretical input. In this work, we construct pseudo-data with
Eq. (1) up to NLO in perturbative QCD using the EPPS16 nPDF set. A
fit is then performed to this pseudo-data, and by comparing the fit output
to the known input, we can assess if a given fitting methodology is working
successfully. Since this pseudo-data is free from possible data inconsistencies
or limitations in the theory calculations, it provides a clean testing group to
validate the fitting strategy employed.

We have performed the simplest type of closure test, known as Level 0
(LO), where the pseudo-data coincides with the EPPS16 prediction without
any additional set of statistical noise added. In this case, a successful fit
should be able to reach asymptotically x> — 0, so that the fit predictions
at the structure function level are identical to those obtained with the in-
put EPPS16 theory. For this L0 closure test, we have used a single neural
network with three input nodes (x,Inz, A), three output nodes NNy, NN,
NNz, and a single hidden layer with 20 neurons. This ANN architecture
contains then 143 free parameters. Our final result consists of 200 Monte
Carlo “replicas”, which in LO tests correspond to different initial parameter
values that are randomly chosen for each fit.

In Fig. 2, we display the x dependence of the preliminary nNNPDF1.0
LO closure test fit results for iron nuclei (A = 56). Here, the gluon, quark
singlet 2, and non-singlet octet Ty distributions are shown at the input scale
Qo = 1.3 GeV and are compared with the EPPS16 result. While the EPPS16
uncertainty band is computed using the asymmetric Hessian method, the
nNNPDF1.0 band instead represents the variance evaluated over the 200
fitted replicas. The fact that both central values agree reasonably well,
especially for the gluon, is a first indication that the closure test is successful.
Note that Y and Ty are strongly anti-correlated in the data region, since
the actual quantity which is being constrained from data is FQA x X+
Ts/4. Also, for LO closure tests, the two error bands have different statistical
interpretations and cannot be compared directly.

In Fig. 3, we present a similar comparison as in Fig. 2, but now show
the mass number A dependence for a fixed value of x. Here, we see that the
closure test results agree with the input EPPS16 theory within uncertainties,
and that they reproduce the same qualitative behaviour as A is varied.
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Fig.2. (Colour on-line) The results of the nNNPDF1.0 Level O closure test. The
nNNPDF1.0 result (solid line with hashed bands) is compared to the EPPS16
nPDF result (hashed line with shaded bands) for the iron nucleus (A = 56) at
Qo = 1.3 GeV for the quark singlet X' (red/top panel), the gluon g (blue/medium
panel), and the quark non-singlet octet distribution Tg (green/bottom panel).
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Fig.3. Similar to Fig. 2, but now showing the comparison for discrete values of
mass number A at fixed x = 0.01.

5. Next steps

In this contribution, we have presented the initial steps towards the
first determination of the nuclear parton distributions in the framework of
the NNPDF methodology. We have validated the effectiveness of improved
neural network training algorithms, in particular the gradient descent min-
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imization with TensorFlow. At the closure test level, we have shown that
we are able to reproduce the results of the chosen input theory, in this case
EPPS16 nPDFs. Work in progress is now focused on extending our approach
to Level 1 and 2 closure tests, as well as to a full QCD analysis of experimen-
tal data. Following an initial study on DIS measurements, we aim to deliver
a full-fledged global nPDF fit that accounts for all available experimental

constraints and is based on state-of-the-art theoretical calculations.

This research has been supported by a European Research Council Start-
ing grant “PDF4BSM”, and by the Netherlands Organization for Scientific

Research (NWO).
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