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A novel way of computing high-order amplitudes in the multi-Regge
limit of the planar maximally supersymmetric Yang–Mills theory is pre-
sented. In this framework, we are able to obtain high-loop and high-leg
results by an easy operation on known amplitudes with fewer loops and
lower multiplicity. This mechanism will be reviewed, along with an ensuing
factorisation which allows us to determine leading logarithmic MHV results
for any number of legs at a fixed loop order.
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1. Introduction

The maximally supersymmetric Yang–Mills theory in four dimensions
(N = 4 SYM) is one of the most studied models in modern physics. In re-
cent years, many properties have been uncovered which led to insights on the
perturbative regime of the theory. For one, beyond the ordinary conformal
symmetry which N = 4 SYM exhibits, a dual conformal symmetry [1–5] was
discovered in the planar limit. This symmetry fixes the 4- and 5-particle
cases completely to the so-called Bern–Dixon–Smirnov (BDS) Ansatz [6].
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Beyond 5 particles, there is an additional non-trivial dual conformally in-
variant contribution [7]. Dual conformal symmetry also spawned a new
approach to kinematics in terms of momentum twistors [8]. This reformu-
lation led to a deeper understanding of the function space of amplitudes in
planar N = 4 SYM for the maximally helicity violating (MHV) and next-
to-maximally helicity violating (NMHV) case [9] and their singularities in
general [10].

Due to these developments, many impressive results in planar N = 4
SYM at high loop orders with many particles were obtained. The 6-particle
amplitude is known at 5 loops [11]. At 7 particles, the MHV amplitude is
known analytically at 2 loops [12] and at symbol level up to 4 loops in the
MHV case and at 3 loops in the NMHV case [13]. However, the techniques
used to obtain these results are limited to 7 or fewer external particles,
and further study of the high-particle case is required to move beyond the
current state-of-the-art. One way to achieve this goal is by studying a special
kinematic limit. In what follows, we will study amplitudes in planar N = 4
SYM in the multi-Regge limit.

2. Amplitudes in the multi-Regge limit

Let us introduce the multi-Regge limit. Consider 1 + 2 → 3 + · · · + N
scattering with all particles outgoing and introduce light-cone coordinates
p± ≡ p0 ± pz and pk ≡ pk⊥ = pxk + ipyk. If we choose the reference frame in
which the momenta of the initial state gluons lie on the z-axis with p0

2 = pz2,
implying p+

1 = p−2 = p1 = p2 = 0, the multi-Regge limit corresponds to the
limit where p+

3 � p+
4 � · · · � p+

N−1 � p+
N and |p3| ' · · · ' |pN |.

We introduce dual coordinates xi as xi − xi−1 = pi. Amplitudes in
planar N = 4 SYM obey dual conformal invariance, which implies that the
kinematical dependence can be expressed in terms of conformal cross ratios
of the dual coordinates. Of these, only 3N−15 are algebraically independent
in four dimensions. In the multi-Regge limit, where amplitudes only depend
non-trivially on the transverse momenta pi, this number of independent
complex cross ratios reduces to N − 5. The set of independent transverse
cross ratios zi that we will use is defined as

zi ≡
(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= −

qi+1 ki
qi−1 ki+1

, (1)

with transverse dual coordinates qi = xi+2 − x1 and ki = xi+2 − xi+1.
With these kinematical considerations in mind, we turn to the form of

amplitudes in multi-Regge kinematics (MRK) in planar N = 4 SYM. As
mentioned before, dual conformal symmetry fixes the 4 and 5 point ampli-
tude to all orders but beyond 5 points the amplitude diverges from the BDS
Ansatz and we get an additional dual conformally invariant contribution.
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In the multi-Regge limit, helicity is conserved by the gluons going very
forward, and thus the helicity configuration is determined by the produced
gluons exclusively. Denoting these helicities by h1, . . . , hN−4, we define the
ratio

eiΦh1,...,hN−4Rh1,...,hN−4
≡ AN (−,+, h1, . . . , hN−4,+,−)

ABDS
N (−,+, h1, . . . , hN−4,+,−)

∣∣∣∣
MRK

, (2)

where eiΦh1,...,hN−4 is a phase factor such that in the Euclidian region we
have Rh1,...,hN−4

= 1. When performing an analytic continuation to another
Mandelstam region, Rh1,...,hN−4

picks up contributions called Regge cuts.
In the Mandelstam region, where the energy components of all produced
particles are analytically continued, it can be written as a dispersion integral
of a product of building blocks. In the multi-Regge limit, large logarithms
appear. Resummed to leading logarithmic accuracy (LLA) in these large
logarithms, Rh1,...,hN−4

is given by [14, 15]

Rh1,...,hN−4
= 1 + a iπ

N−5∏
k=1

+∞∑
nk=−∞

(
zk
z̄k

)nk
2

+∞∫
−∞

dνk
2π
|zk|2iνk


×

[
N−5∏
k=1

ea log(τk)Ek

]
χh11

[
N−5∏
k=2

Chkk−1,k

]
χ
−hN−4

N−5 . (3)

Here, τk ≡ δk
√
|qk−1|2|qk+1|2|pk+3|2

|qk|4|pk+4|2
, where in the multi-Regge limit we have

δk = p+
k+4/p

+
k+3 −−−→MRK

0, and thus log τk denotes the large logarithm.

Furthermore, a is the ’t Hooft coupling and χhik ≡ χhi(νk, nk), C
hk
k−1,k ≡

Chk(νk−1, nk−1, νk, nk) and Ek ≡ E(νk, nk) are the leading order parts of
building blocks called the impact factor, the central emission block and the
BFKL eigenvalue, respectively. The product of these building blocks is put
through an integral transform called the Fourier–Mellin transform which is
given by F [f ](z) =

∑+∞
n=−∞

(
z
z̄

)n
2
∫ +∞
−∞

dν
2π |z|

2iνf(ν, n). We are interested in
the perturbative expansion of Eq. (3). We may write it at ` loops as

R(`)
h1,...,hN−4

= 2πia`
∑

∑
ik=`−1

(
N−5∏
k=1

logik τk
ik!

)
g

(i1,...,iN−5)
h1,...,hN−4

({zi}) . (4)
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The objects g(i1,...,iN−5)
h1,...,hN−4

will henceforth be referred to as perturbative coeffi-
cients and are given by an (N − 5)-fold Fourier–Mellin transform

g
(i1,...,iN−5)
h1,...,hN−4

= FN−5

[
χh11

(
N−5∏
k=2

Chkk−1,k

)
χ
−hN−4

N−5

(
N−5∏
l=1

Eill

)]
. (5)

In [15, 16], it was shown that in momentum space, these objects are made up
of multiple polylogarithms G(a1, . . . , an; z) =

∫ z
0

dt
t−a1G(a2, . . . , an; t), where

G(; z) = 1, in combinations such that their branch cuts cancel. In what
follows, we will use the mathematical properties of the Fourier–Mellin trans-
form to facilitate the computation of the perturbative coefficients.

3. Perturbative coefficients through convolutions

The objects we wish to compute are Fourier–Mellin transforms of prod-
ucts of building blocks. The Fourier–Mellin transform maps products into
convolutions, so that for F [F ] = f and F [G] = g, we have

F [F ·G] = F [F ] ∗ F [G] = (f ∗ g)(z) =
1

π

∫
d2w

|w|2
f(w) g

( z
w

)
. (6)

Thus, rather than recomputing the Fourier–Mellin integral for every per-
turbative coefficient, we might hope to use this convolution product to
compute the perturbative orders recursively. Let us take, for instance, a
three-loop coefficient at seven points g(1,1)

h1,h2,h3
= F2

[
χh11 Ch21,2χ

−h3
2 E1E2

]
=

F [E1]∗g(0,1)
h1,h2,h3

, we see that it can be computed by convolution of a two-loop
seven-point coefficient. Since the perturbative coefficients are single-valued
[16], the evaluation of the convolution integrals can be simplified to a residue
computation, as was shown in [17]. Let f(z) be a single-valued combination
of polylogarithms over rational functions with singularities at z = ai and
z = ∞. Define the holomorphic residue of f at z = a as the coefficient of
the simple holomorphic pole with no logarithmic singularities. The integral
of f over the whole complex plane, if it exists, is given by the sum of the
holomorphic residues of its single-valued antiholomorphic primitive F , i.e.
if ∂̄F = f , then

∫
d2z
π f(z) = Resz=∞F (z)−

∑
i Resz=aiF (z). Thus, single-

valuedness allows us to compute these convolution integrals easily. Further
noting that the Fourier–Mellin transform of the BFKL eigenvalue is a ratio-
nal function F [Ei] = −(zi + z̄i)/(2|1− zi|2), we can see that one can go up
in loop order via

g
(i1,...,ik+1,...,iN−5)
h1,...,hN−4

= F [Eik ] ∗ g(i1,...,ik,...,iN−5)
h1,...,hN−4

, (7)
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as the perturbative coefficients are made up of multiple polylogarithms, and
their integration over rational kernels is straightforward. This method can
also be used to change helicities. For example, for an NMHV coefficient at
seven points g(1,1)

−,+,+ = F2

[
χ−1 C

+
1,2χ

−
2 E1E2

]
= F

[
χ−
1

χ+
1

]
∗g(1,1)

+,+,+, the extracted

term is given by F
[
χ−i /χ

+
i

]
= −(zi)/(1 − zi)2, and so perturbative coeffi-

cients beyond MHV can be obtained by convoluting their MHV counterparts
with a rational function. Convolutions of this sort allow one to obtain all
different helicity configurations.

Using this method, we may start from the known 2-loop MHV amplitude
for any number of points [14] and move our way through all helicities and up
in loop number recursively. Furthermore, this method led to the discovery of
a factorisation of the LLA perturbative coefficients [15], which for the MHV
case states that if we express the coefficients in terms of the transverse dual
coordinates {xi}

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+,...,+ (x1, . . . ,xN−5)

= g
(ia1 ,ia2 ,...,iak )
+,...,+ (xa1 , . . . ,xak) . (8)

Since at leading logarithmic accuracy
∑

j iaj = `−1, the factorisation allows
us to determine MHV LLA amplitudes with any number of external legs,
from the set of amplitudes with up to `+ 4 external legs.

4. Conclusion

We have presented a framework to compute scattering amplitudes in the
multi-Regge limit of planar N = 4 SYM efficiently. Using these methods,
higher-loop contributions can be obtained by recursive operation on lower-
loop results and helicity configurations beyond MHV can be obtained from
MHV results. We have also presented a factorisation which allows us to
determine scattering amplitudes for any number of particles by computing
a finite number of perturbative coefficients.

These methods were first presented in [15] and allowed for the compu-
tation of the LLA MHV amplitude for any number of particles to 5 loops,
the LLA amplitude for 8 or less particles for any helicity configuration up to
4 loops. In [18], a first extension beyond leading logarithmic accuracy was
considered which led to the 7-point amplitude at next-to-leading logarithmic
accuracy (NLLA) through 5 loops for the MHV case, and through 3 and 4
loops for the two independent NMHV helicity configurations, respectively.
Based on the form of the amplitude beyond leading logarithmic accuracy for
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an arbitrary number of particles given in [19], the 8-point NLLA amplitude
for any helicity configuration at 3 loops was computed [20]. In addition, the
same formalism was applied beyond N = 4 SYM to the computation of the
BFKL ladder at NLLA in [21].

This work is supported by the European Research Council (ERC) through
the grants 637019 (MathAm) and 648630 (IQFT), and by the U.S. Depart-
ment of Energy (DOE) under contract DE-AC02-76SF00515.
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