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FLUCTUATIONS IN SMALL SYSTEMS∗
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We review the main features of event-by-event fluctuations of the con-
tent of the Fock states of onia (as models for dilute hadrons, or as bare
hadronic components of virtual photons), as well as some of their observ-
able consequences. We briefly address the total scattering cross section of
a small onium off a nucleus, then of two small onia. Finally, we explain
that the multiplicity in the final state of collisions of large onia with nuclei
may directly be related to the gluon density in the former. We provide first
predictions for the event-by-event fluctuations of the gluon density.
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1. Dressed hadronic states from a branching process

Consider an asymptotic onium, i.e. a bare color-neutral quark–antiquark
pair. To a nucleus with which it interacts during some finite time (of the
order of a few Fermi), it appears, generally speaking, as a more complicated
quantum state. When the onium has a large rapidity with respect to the
nucleus, its typical Fock state as “seen” from the point of view of the nucleus
is a dense set of gluons.

The probability of a given partonic configuration can, in principle, be
calculated from the field theory. However, analytical expressions may be
obtained only in appropriate asymptotic limits. For large rapidities, the
color dipole model [1] provides a procedure to generate unweighted parton
configurations and to derive evolution equations in the rapidity variable. It
is formulated in the large-number-of-color (Nc) limit of QCD, in which a
globally color-neutral set of gluons can be represented by color dipoles, and
in transverse position space. In the framework of the dipole model with
an increase of the rapidity of a color dipole by the small quantity dy there
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is associated a probability dP that a gluon be emitted. If r0 is the size
vector of the initial dipole, then the probability that a gluon be emitted at
position r1 with respect to the quark, up to d2r1, reads [1]

dP = ᾱdy
d2r1

2π

r2
0

r2
1(r0 − r1)2

, with ᾱ ≡ αsNc

π
. (1)

In the large-Nc limit, the emitted gluon together with the quark part of
the initial dipole, and the same gluon together with the antiquark part
of the initial dipole, form two new dipoles, which replace the initial one.
Furthermore, each dipole evolves independently of the other ones present in
the Fock state1 until the maximum rapidity is reached; see Fig. 1. Hence,
in the color dipole model, the state of the interacting onium is built from a
1→ 2 branching process (for a review, see Ref. [2]).

Fig. 1. Schematic representation of QCD evolution in rapidity. Left: An initial
qq̄ pair of size r0 boosted to the rapidity Y gets dressed with (essentially) gluons.
In the color dipole model, in which color-neutral sets of gluons are represented by
sets of color dipoles, the Fock state is built through a 1 → 2 branching process.
Right: Plot of the dipole number n at rapidity Y , in one particular realization of
the QCD evolution of the onium, as a function of the dipole size. The mean shape
is given by the solution to the deterministic BFKL equation, but fluctuations in
the beginning of the evolution may shift the whole distribution randomly.

The mean number density of gluons, namely averaged over events, is
given by the well-understood solution to the BFKL equation [3]. Event-
by-event fluctuations are important in the initial stages of the evolution,

1 This is because the leading order in 1/Nc is given by planar graphs. Interference
graphs for gluon emissions off different dipoles would be nonplanar, and hence can
be discarded.
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when the system is very dilute, and at all rapidities only in the evolution
of the dipoles which have sizes close to that of the largest dipole in the
event, for which the number density is low. A complete description of these
fluctuations is currently out of reach, but we were able to model them and
draw phenomenological consequences that we shall now describe [4].

2. Scattering cross sections

Let us consider an onium of size r0, small compared to the typical
hadronic size 1/ΛQCD, scattering off a large nucleus at total rapidity Y .
We will discuss the total cross section. From the point of view of the nu-
cleus, at high total rapidity, the latter typically appears dressed with many
gluons, represented by a set of color dipoles. The S-matrix element for the
elastic scattering of this particular state is the product of the S-matrix el-
ements for the scattering of the individual dipoles present in the onium at
the time of its interaction with the nucleus. If {ri} is the set of their size
vectors, then

S(r0) =
∏
i

SMV(ri) ,

with SMV(r) = exp

[
−
r2Q2

MV

4
ln
(
e+ 4/r2Λ2

QCD

)]
, (2)

where QMV ∼ 1 GeV is the nuclear saturation momentum. The expression
for the S-matrix element associated to the scattering of an elementary dipole
at low rapidity, SMV, stems from the McLerran–Venugopalan model [5].

S(r0) is close to one if no dipole in the state has a size much larger
than 1/QMV. It is close to zero if at least one dipole has a size larger than
1/QMV. In other words, in a first approximation, S(r0) can be thought of
as the probability that there be at least one dipole larger than the inverse
saturation momentum of the nucleus in the Fock state of the photon at
rapidity Y [4]. The amplitude for the scattering is just T (r0, Y ) = 1 −
〈S(r0)〉Y , where 〈·〉Y represents the average over all possible Fock states,
namely dipole configurations.

T (r0, Y ) also obeys the Balitsky–Kovchegov equation [6, 7], whose solu-
tion exhibits the following feature:

T (r0, Y ) ∼ ln
1

r2
0Q

2
s (Y )

[
r2

0Q
2
s (Y )

]γ0
for 1�

∣∣ln r2
0Q

2
s (Y )

∣∣�√
χ′′(γ0)ᾱY , (3)
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where the rapidity-dependent saturation scale Qs(Y ) reads

Q2
s (Y ) ∼ Q2

MV

eᾱχ
′(γ0)Y

(ᾱY )3/(2γ0)
. (4)

Here, χ(γ) = 2ψ(1)−ψ(γ)−ψ(1− γ) and γ0 solves χ′(γ0) = χ(γ0)/γ0. The
analytic form of the amplitude can be related to the distribution of the two
kinds of fluctuations in the evolution of the onium, the ones in the beginning
of the evolution, and the ones at the large-size tip of the distribution of the
dipole sizes; see Ref. [4] for details.

We now turn to the scattering of two small onia of respective sizes r0 and
r′0 > r0. At moderate rapidities, the amplitude solves the BFKL equation,
but to date, there is no sound formulation of the latter in the limit of large
rapidities. However, the picture of QCD evolution as a branching process
enabled us to find the asymptotic form of the amplitude [4]

T (r0, Y ) ∼ ln2 1

r2
0Q

2
s (Y )

[
r2

0Q
2
s (Y )

]γ0 , (5)

where now Q2
s (Y ) ' eχ′(γ0)ᾱY /r′20 .

Note that in this picture, the cross section is essentially determined by
the size distribution of the largest dipole in the Fock state.

3. Fluctuations of the number of particles produced
in onium–nucleus collisions

Now, consider the scattering of an onium of size larger than 1/QMV off
a large nucleus. When the impact parameter is within the radius of the
nucleus, then the S-matrix element is clearly close to zero. One interesting
quantity to study is the number of particles produced in a given rapidity
slice in the fragmentation region of the proton in a given event. In Ref. [8],
we suggested that it may be directly related to the gluon density in the
onium integrated up to the saturation scale of the nucleus with which it
interacts at a value of the momentum fraction x in correspondence with the
rapidity of the final-state hadrons that are measured. Hence, measurements
of the multiplicity of particles may provide an insight into the event-by-event
fluctuations of the gluon density in the onium.

The dipole model, supplemented with a model for confinement, is an
appropriate framework to compute these fluctuations: Indeed, it provides
equations for the probability Pn to have n dipoles of size larger than a given
threshold, namely n gluons of momenta smaller than the saturation scale, in
a given realization. However, the equations for Pn are too complicated to be
solved analytically. We were, nevertheless, able to obtain closed expressions
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for Pn in asymptotical limits. For n large with respect to its expected
value n̄, we have found [8]

Pn ∝ r2
0Λ

2
QCD ×

1

n1
e−n/n1 for n� n̄ . (6)

The mechanism for generating high-multiplicity events is the following: In
the very beginning of the evolution, the onium of size r0 promptly splits
to the largest dipoles compatible with confinement of size 1/ΛQCD. This
step has the probability r2

0Λ
2
QCD in the limit of r0 � 1/ΛQCD. In a second

step, the system decays into smaller dipoles over the remaining rapidity
range: The number of dipoles resulting from this process is distributed as a
decreasing exponential in the same way as the number of objects generated
in a 1 → 2 simple branching process. The parameter n1 of the exponential
is the expected number of dipoles, namely the ordinary gluon density in a
hadron evaluated at the saturation scale of the nucleus.

In the small-n limit instead, we have found the following expression
for Pn [9]:

Pn ∝ exp

(
1

2
ln2 n− 1

4

ln4 n

ln2 n̄
− 1

4
ln2 n̄

)
for 1� n� n̄ . (7)

In order to check our understanding of the mechanism leading to dipole
number fluctuations, we have written a Monte Carlo code implementing
the color dipole model (supplemented with an infrared cutoff modeling con-
finement) [9]. The numerical results we have obtained are in very good
agreement with the analytical formulas (6) and (7).

4. Outlook

From our recent theoretical results on the multiplicity distribution in the
final state of onium–nucleus scattering processes, one may derive predictions
for proton–nucleus collisions at the LHC, or for deep-inelastic scattering
at a future electron–ion collider. The former is quite demanding, since a
proton is not a quark–antiquark pair, and it is not clear whether a quark–
diquark dipole would be a good model in this context. The latter is clearly
more straightforward [10] since onium–nucleus interaction is a subprocess of
electron–nucleus scattering, factorizable in the limit of high energies.

Next-to-leading order effects are known to be important practically; one
eventually needs to implement them to arrive at a quantitative description of
the data. A kinematical constraint [11], or a modified kernel incorporating
resummations of collinear logarithms [12] may be good ways to effectively
account for subleading effects.
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