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Pomeron is a term introduced in the 1960s in the framework of the
phenomenological Regge theory. It describes the behavior of the total cross
sections of any hadronic reaction at extremely large values of the invari-
ant energy s. In the QCD context, the best-known contributions to the
Pomeron come from the BFKL equation. The BFKL equation accounts
for total resummation of Leading Logarithmic (LL) contributions, i.e. the
terms where single-logarithmic contributions are multiplied by the overall
factor s. The high-energy asymptotics of such resummation is known as the
BFKL Pomeron. It predicts the total cross section to be ∼ s∆, where the
exponent ∆ is called the intercept of the BFKL Pomeron. In contrast, the
Double-Logarithmic (DL) contributions are not accompanied by the overall
factor s, so resummation of them leads to the asymptotic form ∼ s(∆DL−1)

which looks negligibly small compared to the BFKL result. However, the
intercept ∆DL proves to be so large that its value compensates for the
lack of the extra factor of s and makes the DL Pomeron of importance
comparable to the BFKL Pomeron. By this reason, contributions of the
DL Pomeron should be taken into account whenever the BFKL Pomeron
applies.
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1. Introduction

The classic/phenomenological theory of Regge poles does not involve
any specific model strong interactions. On the contrary, it is based on such
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fundamental concepts as analyticity, causality and unitarity. One of the
basic results of the Regge theory is the prediction that asymptotic of the
total cross section σtot of any hadronic reaction is

σtot ∼ sα(0)−1 , (1)

with α(0) being the Regge trajectory α(t) at t = 0. The Froissart–Martin
bound states that α(0) ≤ 1. Pomeranchuk [1] presumed that there could
exist a Reggeon with maximally possible value of α(0) = 1. Such Reggeon
is called Pomeron. The Regge theory is not able to estimate values of α(t).
Even more serious drawback of the Regge theory is that there are no means
to estimate the energy scale, where the Regge asymptotics of Eq. (1) reliably
describes the total cross section.

Several different Pomerons are known in the QCD framework but the
BFKL Pomeron [2] is presently the most popular. The BFKL equation sums
to all orders in αs the leading logarithmic (LL) contributions, i.e. scattering
amplitudes ALL in the LL approximation (LLA) are represented as the sum
of single-logarithmic (SL) contributions multiplied by the overall factor s

ALL = s
∑

cn(αs ln s)
n . (2)

The high-energy asymptotics of ALL is called the BFKL Pomeron. Log-
arithmic contributions in Eq. (2) are called SL because each power of the
coupling is multiplied by one log. In contrast, the double-logarithmic ap-
proximation (DLA) is also known, where the coupling is multiplied by two
logs in each order of the perturbation expansion, see Ref. [3]. As a result,
scattering amplitudes ADL in DLA are represented through total resumma-
tion of DL contributions

ADL =
∑

c′n(αs ln
2 s)n . (3)

In Eqs. (2) and (3), cn and c′n are numerical factors. The high-energy
asymptotics of ADL is the DL Pomeron. Although each term in the series in
Eq. (2) contains less logarithms than the one in Eq. (3) and, therefore, the
nth term is suppressed by the factor lnn s, the sum of such terms in Eq. (2)
is multiplied by the overall factor s which seems to be so great that there
exists the unanimous opinion among “logarithmic QCD society” stating that
the LLA contribution (2) to any scattering amplitude involving a Pomeron
exchange prevails a lot over the DLA contribution (3) and, therefore, the
DL Pomeron can only be a small correction to the BFKL Pomeron. In
Ref. [4], we proved that this opinion was a misconception. In fact, the DL
Pomeron is not less important than the BFKL one. In the present paper, we
demonstrate it calculating first the amplitude Aγγ of the elastic γ∗γ∗ → γ∗γ∗

scattering in DLA, then calculating the high-energy asymptotics of Aγγ i.e.
the DL Pomeron and comparing it with the BFKL Pomeron.
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2. Amplitude of the elastic photon–photon scattering in DLA

We consider the elastic scattering of virtual photons in the forward kine-
matics s� −t

γ∗(q)γ∗(p)→ γ∗
(
q′
)
γ∗
(
p′
)
, (4)

assuming all the photons to be unpolarized and keeping the standard nota-
tions

s = (p+q)2 , t =
(
p−p′

)2
,

∣∣p2∣∣ ≈ ∣∣p′2∣∣ = Q2
1 ,

∣∣q2∣∣ ≈ ∣∣q′2∣∣ = Q2
2 .

(5)
We introduce the infrared cut-off µ in order to regulate infrared diver-

gences. Expressions for the scattering amplitude of process (4) are simpler
when Q2

1, Q
2
2 ≤ µ2. In this case, the amplitude does not depend on Q2

1,2

with DL accuracy. When Q2
1,2 � µ2, the situation is more involved. As it is

known (see e.g. Refs. [5, 6]), there are two kinematic regions, where Aγγ is
described by different expressions. First, there is the region of moderately
virtual photons where

sµ2 > Q2
1Q

2
2 . (6)

We denote A(M)
γγ the scattering amplitude Aγγ in region (6). We call the

region of deeply virtual photons the opposite region, where

sµ2 < Q2
1Q

2
2 (7)

and denote A(D)
γγ the scattering amplitude in region (7). It is convenient to

use the Mellin transform for Aγγ

Aγγ
(
s,Q2

1, Q
2
2

)
=

ı∞∫
−ı∞

dω

2πı
eωρFγγ(ω, y1, y2) , (8)

where we have introduced the µ-dependent logarithmic variables ρ, y1, y2:

ρ = ln
(
s/µ2

)
, y1 = ln

(
Q2

1/µ
2
)
, y2 = ln

(
Q2

2/µ
2
)
. (9)

In order to calculate A(M,D)
γγ we construct and solve the Infrared Evolution

Equation. This method was suggested by Lipatov [7]. It is based on a
possibility to isolate/factorize DL contributions of the softest partons i.e.
the partons which have the minimal transverse momenta k⊥. This property
of the softest partons was first found in Ref. [8] in the QED context. The
IR cut-off µ in the IREE method is introduced in the transverse momentum
space. In DLA, all transverse momenta are ordered, so only integration over
the softest momentum k⊥ involves µ as the lowest integration limit. At the
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same time, µ plays the role of the mass scale. After factorization of the
softest parton, its momentum k⊥ plays the role of the IR cut-off/mass scale
for all other virtual parton momenta. The IREE for A(M)

γγ is illustrated by
the graphs in Fig. 1. It involves the auxiliary amplitudes Aγq, Aγg and their
inverse.

−µ2 d
dµ2 Aγγ = −µ2 d

dµ2 +

Aγq

Aqγ

Aγg

Agγ

k
k

k
k

Fig. 1. IREE for Aγγ . The dashed lines stand for the external photons, the straight
(wavy) lines denote the quark (gluon) propagators of the softest partons with mo-
menta k.

Applying to this equation the standard Feynman rules and using trans-
form (8), we can write down this IREE in the analytical form1. The IREE
for F (M)

γγ and F (D)
γγ are different because A(D)

γγ does not depend on µ

ωF (M)
γγ +

∂F
(M)
γγ

∂y1
+
∂F

(M)
γγ

∂y2
=

1

8π2
[FγqFqγ + FγgFgγ ] ,

∂A
(D)
γγ

∂ρ
+
∂A

(D)
γγ

∂y1
+
∂A

(D)
γγ

∂y2
= 0 . (10)

Solving these equations, we represent A(M,D)
γγ in terms of the auxiliary

amplitudes. All auxiliary amplitudes can also be found with constructing
and solving IREEs for them. The explicit expressions for A(M,D)

γγ can be
found in Ref. [4]. They are rather complicated, so we do not reproduce
them here. Instead, in this paper, we will focus on high-energy asymptotics
of A(D)

γγ . As the asymptotics for A(M)
γγ and A(D)

γγ are the same, we will drop
the superscripts M,D in what follows.

3. Asymptotics of Aγγ

The asymptotics of Aγγ at s → ∞ can be found with the standard
mathematical means: the saddle/stationary point method. It states that

1 See details in Ref. [4].
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when Aγγ of Eq. (8) is represented as

Aγγ =

ı∞∫
−ı∞

dω

2πı
eωρ+Ψ , (11)

its asymptotics looks as follows:

Aγγ ∼ Aas
γγ =

eΨ(ω0)√
2πΨ ′′(ω0, ρ)

(
s

µ2

)ω0

, (12)

with the stationary point ω0 being the rightmost solution of the equation
ρ+ Ψ ′ = 0. Applying this technique to the explicit expressions for Aγγ , we
obtain its asymptotics Aas

γγ :

Aas
γγ =

λ(ω0)√
ρ3

(
s√
Q2

1Q
2
2

)ω0

, (13)

where the λ stands for the impact-factors. The Reggeon in Eq. (13) is
the DL contribution to Pomeron. It is altogether non-BFKL contribution.
Estimating ω0 was done in Ref. [4] for several different situations:

A. Approximation of fixed αs; gluon contribution is accounted for, while
quark contribution is neglected. In this case, the intercept ω0 = 1.35.

B. Approximation of fixed αs; both gluon and quark contribution are
accounted for. Impact of quark contribution decreases the intercept
down to ω0 = 1.35.

C. QCD coupling αs runs; quark contribution are neglected. Running
coupling effects decrease of the intercept down to ω0 = 1.25.

D. QCD coupling αs runs; both gluon and quark contribution are ac-
counted for. Further decrease of the intercept down to ω0 = 1.07.

We see that, similarly to the BFKL Pomeron, the DL Pomeron is supercrit-
ical though its value decreases with the increase of the accuracy of calcula-
tions.

Asymptotics Aas
γγ represents its parent amplitude Aγγ reliably when their

ratio
Ras(s) = Aas

γγ(s)/Aγγ(s) (14)
is close to unity. Numerical calculations yield that Ras(s) ≥ 0.9, when
s > smin, with

smin = 106
√
Q2

1Q
2
2 . (15)

We remind that similar estimates for the applicability region of the BFKL
Pomeron are absent in the literature.
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4. Conclusion

In the present paper, we explained how to calculate the DL contribu-
tion to Pomeron and listed estimates for its intercept obtained for the cases
of fixed and running QCD coupling, for the case of pure gluon contribu-
tion as well as for the mixture of gluon and quark contributions. We also
demonstrated that although the Regge asymptotics are given by simple and
convenient expressions, they should not be used beyond their applicability
regions, which for the gamma–gamma scattering is given by Eq. (15). At
s < smin, one should use the parent amplitudes AM,D

γγ but not their asymp-
totics. We think that Eq. (15) can also be used to estimate an applicability
region of the BFKL Pomeron, so the BFKL Pomeron can be used at energies
s > smin and in this region it should be used together with the DL Pomeron.

This work was initiated by discussions during the workshop Diffraction-
2016. In this regard, we are grateful to D.A. Ross, W. Schafer, A. Szczurek
and especially to D.Yu. Ivanov.
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