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We study the phase diagram of the 1+1 dimensional Gross–Neveu
model at finite number of fermion flavors using the lattice field theory. Nu-
merical results are presented, which indicate the existence of an inhomoge-
neous phase, where the chiral condensate is a spatially oscillating function.
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1. The Gross–Neveu model and its phase diagram
in the limit of infinitely many fermion flavors

Exploring the phase diagram of QCD using lattice computations is cur-
rently restricted to small chemical potential, because of the QCD sign prob-
lem (see e.g., [1, 2] and references therein). There are, however, several QCD-
inspired models e.g., the Gross–Neveu (GN) model [3], which are technically
simpler to treat, and which share certain symmetries with QCD. Studies of
such models might, thus, provide insights concerning the phase diagram of
strongly interacting matter. A notable feature of the GN model in 1+1 di-
mensions in the limit of infinitely many fermion flavors is the existence of
a so-called inhomogeneous phase, where the chiral order parameter is not
a constant, but spatially oscillating [4, 5] (for a review on inhomogeneous
condensates and phases, see [6]). In this work, we perform a lattice field
theory study of the 1+1 dimensional GN model at finite number of fermion
flavors Nf , to explore whether inhomogeneous phases also exist at finite Nf .
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The Euclidean action of the GN model is

S =

∫
d2x

 Nf∑
n=1

ψ̄n
(
γ0(∂0 + µ) + γ1∂1

)
ψn −

λ

2Nf

(
Nf∑
n=1

ψ̄nψn

)2
 ,

(1.1)
where ψ denotes a fermionic field with Nf flavors and µ is the chemical
potential. One can get rid of the four-fermion interaction by introducing a
scalar field σ, which leads to the following partition function:

Z =

∫
Dσ exp

(
−Nf

(
1

2λ

∫
d2xσ2 − ln (det ((∂0 + µ)γ0 + ∂1γ1 + σ))

))
︸ ︷︷ ︸

Seff

.

(1.2)
The effective action has a discrete chiral symmetry, Seff [+σ] = Seff [−σ],
where 〈σ〉 ∝ 〈

∑
n ψ̄nψn〉 represents the chiral condensate and indicates

whether the symmetry is spontaneously broken.
The phase diagram of the 1+1 dimensional GN model in the limit of

Nf →∞ has been calculated in [4, 5]. There are three phases (see Fig. 1):

— a chirally symmetric phase, where 〈σ〉 = 0;

— a homogeneously broken phase, where 〈σ〉 = const 6= 0;

— an inhomogeneous phase, where 〈σ〉 is a spatially oscillating function.

In the inhomogeneous phase, 〈σ〉 exhibits a periodic kink–antikink struc-
ture close to the phase boundary to the homogeneously broken phase and
gradually changes into a sin-like structure for increasing µ.
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Fig. 1. Phase diagram of the GN model in the large-Nf limit (see [4, 5]).
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2. The phase diagram at finite number of fermion flavors

We perform lattice Monte Carlo simulations of the 1+1 dimensional GN
model defined in Eq. (1.2) at finite Nf ∈ {8, 16, 24, 32, 48}. We use two
different discretizations of the fermionic determinant, naive fermions and
SLAC fermions (see e.g. [7]), which we consider to be an important cross
check of our numerical results: the results obtained with the two discretiza-
tions agree within statiscal errors. We set the scale via the absolute value of
the chiral condensate at chemical potential µ = 0 and temperature T = 0,
i.e. σ0 = 〈|σ̄|〉µ=0,T=0, where

σ̄ =
1

V

∑
x,t

σ(x, t) , (2.1)

V is the number of lattice sites and 〈. . .〉µ,T denotes the path integral expec-
tation value at chemical potential µ and at temperature T , i.e. the average
over the generated set of Monte Carlo field configurations. In other words,
we express dimensionful quantities in units of σ0, e.g. µ/σ0, T/σ0.
〈|σ̄|〉µ,T is also a suitable approximate order parameter to distinguish

between a homogeneously broken phase on the one hand (〈|σ̄|〉µ,T 6= 0)
and a restored or inhomogeneous phase on the other hand (〈|σ̄|〉µ,T ≈ 0).
Numerical results for Nf = 8 are shown in Fig. 2, left plot. A homoge-
neously broken phase is indicated by the light gray/yellow dots at small µ
and small T , somewhat smaller, but in a similar region as for infinite Nf .
Results from analogous computations for Nf ∈ {16, 24, 32, 48} restricted to
µ = 0 are shown in Fig. 2, right plot. When increasing Nf , the results
approach the numerical result at infinite Nf (the latter has been obtained
using techniques developed and explained in [8–10]).
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Fig. 2. (Color online) Left: 〈|σ̄|〉µ,T /σ0 as a function of µ/σ0 and T/σ0 for Nf = 8.
Right: 〈|σ̄|〉µ=0,T /σ0 as a function of T/σ0 and µ/σ0 = 0 for various Nf .
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To check for the existence of an inhomogeneous phase at finite Nf , we
compute the spatial correlation function of the chiral condensate 〈C(x)〉µ,T
and its Fourier transform 〈C̃(k)〉µ,T , where

C(x) =
1

V

∑
y,t

∑
x

σ(y, t)σ(y + x, t) . (2.2)

Both 〈C(x)〉µ,T and 〈C̃(k)〉µ,T are suited to distinguish the three phases we
are expecting as illustrated by Fig. 3:

— Chirally symmetric phase: 〈C(x)〉µ,T quickly approaches 0.0. The
Fourier transform is a smooth function close to 0.0 indicating a van-
ishing chiral condensate.

— Homogeneously broken phase: 〈C(x)〉µ,T quickly approaches σ2
0. The

Fourier transform exhibits a pronounced peak at k = 0 representing
the non-vanishing constant chiral condensate.

— Inhomogeneous phase: 〈C(x)〉µ,T is an oscillating function. The Fourier
transform exhibits a pronounced peak at k 6= 0 proportional to the in-
verse wave length of the chiral condensate.
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Fig. 3. C(x) and C̃(k) for Nf = 8. Top: µ/σ0 = 0 and T/σ0 = 0.988 (chirally
symmetric phase) as well as T/σ0 = 0.082 (homogeneously broken phase). Bot-
tom: µ/σ0 ∈ {0.5, 0.7, 1.0} and T/σ0 = 0.082 (inhomogeneous phase).
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Of particular interest are the plots at the bottom of Fig. 3, because they
provide clear evidence for the existence of an inhomogeneous phase at fi-
nite Nf .

To identify the boundary between the homogeneously broken phase and
the inhomogeneous phase, we plot in Fig. 4

kmax =

∣∣∣∣arg max

(〈
C̃(k)

〉
µ,T

)∣∣∣∣ (2.3)

as a function of µ and T . The phase boundary is clearly visible at ≈ µ/σ0 ≈
0.45 separating the black/blue points (kmax ≈ 0, homogeneously broken
phase) from the gray/red points (kmax 6= 0, inhomogeneous phase).
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Fig. 4. (Color online) kmax/σ0 as a function of µ/σ0 and T/σ0 for Nf = 8.

To exhibit the oscillations of the chiral condensate in the inhomogeneous
phase in an even more direct way, we compute 〈σ(x+xshift, t)〉µ,T . Here, xshift

is the phase shift of the spatially oscillating chiral condensate σ(x, t) deter-
mined individually for each Monte Carlo field configuration by a standard
Fourier transform. In this way, destructive interference is excluded, when
averaging over the Monte Carlo field configurations. In Fig. 5, we show
〈σ(x+xshift, t)〉µ,T at three different (µ, T ). In the left plot (homogeneously
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Fig. 5. 〈σ(x + xshift, t)〉µ,T as a function of x/σ0 and t/σ0 for (µ/σ0, T/σ0) =

(0.0, 0.038) (homogeneously broken phase, left plot) and (µ/σ0, T/σ0) ∈
{(0.5, 0.038), (0.7, 0.038)} (inhomogeneous phase, center and right plot).
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broken phase), 〈σ(x + xshift, t)〉µ,T is almost constant, close to σ0, while in
the center plot and the right plot (inhomogeneous phase), spatial oscillations
are clearly visible.
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