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We discuss previous results for the light scalar mesons as four-quark
states as well as recent results for the heavy–light axialvector states using
the Dyson–Schwinger and Bethe–Salpeter equations. We introduce a new
technique for solving the axialvector heavy–light four-quark system.
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1. Introduction

1.1. Exotic charmonium states

Before the discovery of theX(3872) in 2003, the spectrum of charmonium
states could be well-understood by potential model calculations. Since then,
however, evidence has increased that there are other states in the same mass
region whose interpretation needs to go beyond the naive qq̄ assignment. The
appearance of the charged Z states, for example, is discussed as a smoking
gun signature for four-quark/anti-quark states. Other possible states of
exotic nature are hybrids, glueballs, or even states with more than four
valence (anti-)quarks, see [1, 2] for reviews.
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In this work, we focus on four-quark states. Their internal structure
has been the topic of many studies with suggestions ranging from hadronic
molecules (heavy–light meson clusters with long-range interactions), diquark–
antidiquark states, or hadro-charmonia (separate clustering of heavy and
light quarks). These have been investigated using effective field theory meth-
ods, lattice QCD, QCD sum rules, potential models and other approaches,
see e.g. [1, 3–9] and references therein. In this respect, the functional ap-
proach using the Dyson–Schwinger (DSE) and Bethe–Salpeter (BSE) equa-
tions can offer additional insight. The Bethe–Salpeter amplitude of a four-
quark state contains components from wave functions for heavy–light mesons
(MOL), diquark–antidiquark configurations (DA), and hadro-charmonium
combinations (MES), and the system is able to determine which of these
components dominate. This leads to additional information on the nature
of a state, as we will see below.

1.2. Light scalar mesons

The light scalar mesons (JPC = 0++) have been under discussion for
many years [10]. In principle, one would expect their masses to be roughly
in the same range as other p-wave mesons such as axialvectors and tensors,
i.e. between 1–1.5 GeV. This is indeed where many scalar states appear.
The lightest scalar nonet, however, has masses between 0.5–1 GeV and a
very peculiar decay pattern: The f0(500)/σ is very broad and decays pre-
dominantly to ππ. In addition, the κs which carry strangeness are broad
states well above the Kπ threshold. By contrast, the isosinglet/isotriplet
f0/a0(980) lie at the KK̄ threshold and are rather narrow in comparison.
Furthermore, the mass ordering within the multiplet is not compatible with
an ordinary qq̄ nonet, where the three a0s have only light quarks in their wave
function but their masses are degenerate with the f0(980) which carries a
strange-quark pair. This is also in contradiction to their decay channels with
hidden strangeness. A possible solution was introduced by Jaffe in 1977 [11]:
He interpreted the light scalars as bound states of scalar diquarks, which led
to a better understanding of the mass ordering within the multiplet, the
large width of the OZI-superallowed decays of σ/κ into ππ/Kπ, and the
decay pattern of the a0s that can be explained by the additional ss̄ pair in
their wave function as compared to a qq̄ assignment. The non-qq̄ nature of
the light scalars is supported by calculations in many different frameworks
such as unitarized ChPT [12, 13], quark models [14], the extended linear
sigma model [15], and QCD sum rules [16].
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2. The method

The DSE/BSE framework for bound states [17–19] is based on calcu-
lating the QCD propagators and vertices from their DSEs, which are sub-
sequently used as ingredients in the calculation of bound-state properties
from BSEs. This has successfully been applied to mesons and baryons [19],
glueballs [20], and light scalar tetraquarks [21, 22]. We use the rainbow-
ladder approximation [23], which effectively limits the tensor structure of
the quark–gluon vertex to the one of a bare vertex, with a dressing function
that depends on the gluon momentum only and whose product with the
gluon dressing function is replaced by an effective coupling αeff(k2). From
here, one can obtain a self-consistent solution for the quark propagator and
also derive a consistent two-body scattering kernel for the BSE resulting in a
dressed gluon exchange. This kernel also describes the two-body interactions
in the tetraquark BSE shown in Fig. 1.

Fig. 1. (Color online) Schematic diagram (without permutations) of the four-quark
BSE including two-body interactions only. The blue box and yellow half-ellipse
denote the gluon exchange kernel and the tetraquark amplitude, respectively.

The tetraquark amplitude (yellow half-ellipse) is given by

Γ = Dirac ⊗ color ⊗ flavor =
∑
i

fi(Ω)τi ⊗ color ⊗ flavor . (1)

It consists of two color structures and 256 Dirac tensors (32 with s waves
only) in the scalar and 768 (48) in the axialvector case. The set Ω stands
for all possible Lorentz invariant combinations of four vectors, which gives
a total of nine for fixed total momentum P . It is convenient to use a set
of Lorentz invariants that transform under the permutation group S4 [24],
which leads to a singlet (S0), a doublet (D) and two triplets (T0, T1). In
[22], it was found that the amplitude is dominated by products of two-body
poles which can be parameterized by the kinematic variables contained in
S0 and D. This implies that the amplitudes can be parameterized to good
approximation by a residue times a product of two-body poles

fi(Ω) ≈ fi(S0)(
(p1 + p2)2 +m2

12

) (
(p3 + p4)2 +m2

34

) , (2)

where p1, p2 are the momenta of the contributing (anti-)quarks. It turns out
that the dependence of the residue on the kinematic variables characterizing
the triplets is weak.
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Figure 2 shows results for the masses of the light scalar mesons from
the four-body equation [22], Fig. 1, together with those from a two-body
approximation in terms of mesons and diquarks [21]. The mass ordering
of the experimental states is nicely reproduced, as can be seen in the left
plot. The right plot shows that the four-body calculation for the σ so far
produces a resonance above ππ threshold for quark masses from the physical
light quark masses up to the charm region, where it becomes bound again.
The lightest scalar tetraquark is dominated by the internal ππ components
in agreement with the experimentally observed σ/f0(500).

Fig. 2. Left: Real part of the light scalar meson masses as a function of the quark
mass. Right: Mass evolution of the two- and four-body results for the lightest scalar
tetraquark [21, 22] in comparison to the ππ and diquark–antidiquark thresholds.

3. Axialvector states in the charm energy region

The same framework can also be applied to heavy–light four-quark states
in the charm energy region. Currently, we focus on the ground state in the
axialvector channel, which might be identified with the X(3872). We again
solve the four-quark equation in Fig. 1. We expand the corresponding Bethe–
Salpeter amplitude into heavy–light meson (MOL) and hadro-charmonium-
like (MES) tensors inspired by the physical constituents that these state can
have, as well as diquark–antidiquark (DA) components. If enough terms
are considered, this procedure eventually leads to a complete basis. Encour-
aged by the outcome of the calculation of scalar mesons, we parameterize
the dressing functions fi(Ω) of the amplitude by the residue-pole structure
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discussed around Eq. (2), where the respective pole positions are calculated
from their two-body BSEs. This leads us to

Γ = DD̄∗ +D∗D̄ +D+D∗− +D∗+D− + J/Ψω +
∑
q=u,d

(SA + AS)q . (3)

Here, the MOL contribution is represented by the D mesons, the MES part
by J/Ψω and the DA part by scalar and axialvector diquarks (S/A), where
the sum goes over both light quark flavors.

In Fig. 3, the results for two different versions of Γ in Eq. (3) are pre-
sented. The red circles are obtained by retaining the MOL component only
and the green triangles include both MOL and MES components. Keeping
in mind that the points at the lightest two quark masses are plagued by
technical difficulties, the extrapolation of the larger mass points leads to an
axialvector four-quark state in the mass region of theX(3872). Furthermore,
the results clearly show that the ωJ/Ψ (MES) component is negligible and
the molecular component dominates.
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Fig. 3. (Color online) Heavy–light axialvector tetraquark mass as a function of the
light quark mass.

4. Outlook

We presented first results for the axialvector ground state in the heavy–
light quark sector using a new method to deal with the four-body equation.
In order to systematically explore four-quark states in the charm energy
region, we work on further generalisations to other quantum numbers.
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