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DECONFINEMENT TEMPERATURE IN AdS/QCD
FROM THE SPECTRUM OF SCALAR GLUEBALLS∗
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We scrutinize various holographic estimations of the deconfinement
temperature within the bottom-up AdS/QCD models. A special emphasis
is put on the recent idea of isospectral potentials in the holographic ap-
proach. It is demonstrated that different models from an isospectral family
(i.e., the models leading to identical predictions for the spectrum of hadrons
with fixed quantum numbers) result in different predictions for the decon-
finement temperature. This difference is found to be quite small in the
scalar glueball channel but very large in the vector-meson channel which is
often used for fixing parameters of holographic models. The observed sta-
bility in the former case clearly favors the choice of the glueball channel for
thermodynamic predictions in AdS/QCD models, with the scalar glueball
trajectory being taken from lattice simulations and used as a basic input
in improved versions of the Soft Wall holographic model.
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The modern experiments on heavy-ion collisions at ALICE in CERN and
RHIC (the Brookhaven National Laboratory) and planned experiments at
FAIR (GSI) have caused a hot interest in the theoretical study of the QCD
phase diagram. Some time ago, it was realized that the QCD phase diagram
can be studied within the framework of the holographic approach to strong
interactions. The holographic approach has many applications in QCD [1]
and beyond, including even a description of high-temperature superconduc-
tivity (see, e.g., discussions in [2]). Concerning the QCD phase diagram,
one of the primary questions is to calculate the critical temperature Tc at
which hadronic matter is supposed to undergo a transition to a deconfined
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phase. Within the bottom-up holographic approach, this type of studies was
pioneered by Herzog in Ref. [3] and continued by many authors (see, e.g.,
references in [4]). In these papers, the gravity part of a 5D model is assumed
to come from a dual description of gluodynamics and can be used to study
thermodynamic properties of original 4D gauge theory. The deconfinement
is related to a Hawking–Page phase transition between a low-temperature
thermal Anti-de Sitter (AdS) space and a high-temperature black hole in
the AdS/QCD models.

The two sectors of the 5D model turn out to be closely related when
concerning the value of Tc. The estimation of Tc depends on the model
parameters which were traditionally connected to the main purpose of the
first bottom-up AdS/QCD papers [5–7] — to the description of light vector-
meson spectra (see, e.g., discussions in [1, 8–11]). The estimates of Tc in [3]
follow the parameter values of these works. This traditional choice was moti-
vated by a relatively rich experimental data on light vector mesons, however,
there seems to be no particular reason why the vector-meson spectra should
in any way determine the deconfinement temperature. At the same time,
a simple description of meson spectra, especially the radial Regge trajecto-
ries appearing in Soft Wall (SW) models [7], is one of the most attractive
features of holography.

In the present study, we will argue that the scalar glueball (and its radial
excitations) is a much better option for fixation of the model parameters.
Our main arguments can be shortly given as:

(i) Phase diagram can be studied in pure gluodynamics. Since the holo-
graphic approach is defined in the large-Nc (planar) limit of gauge the-
ories where the glueballs dominate over the usual mesons and baryons
(as the quarks are in the fundamental representation), the gluody-
namics must dictate the overall mass scale and thereby the major
contribution to the deconfinement temperature Tc.

(ii) The isospectrality concept [12]. Within it, one can show that the
predicted values of Tc are more stable for scalar glueballs than for
vector mesons.

(iii) Phenomenological reasons. Numerical values of Tc determined in the
scalar glueball framework can be interpreted as better fitting the lattice
expectations.

The first argument was scrutinized in our paper [4] (see also [13, 14]) and
we will further substantiate the point. One can observe, for example, that if
we take the linear radial spectrum of scalar glueballs given by the standard
SW holographic model, m2

n = µ2(n + 2), n = 0, 1, 2, . . . (the interpolating
operator G2

µν is assumed), and consider the scalar resonance f0(1500) [15] as
the lightest glueball (as is often proposed in the hadron spectroscopy [15]),
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we will obtain the slope µ2 = 1.13 GeV2. It agrees perfectly with the mean
radial slope µ2 = 1.14±0.01 GeV2 found for the light mesons in the analysis
of Ref. [16] and achieved independently in Ref. [17] (see also some related
discussions in [18]).

The second argument is motivated by an interesting finding of the au-
thors of Ref. [12] that the particular form of spectrum in SW-like models
does not fix a model itself: One can always construct a one-parametric fam-
ily of SW models (controlling modifications of the “wall”) leading to the same
spectrum. We will demonstrate that such isospectral models, however, result
in different predictions for the deconfinement temperature Tc. In the vector
channel, these variations can be quite significant, whereas in the scalar case,
the difference may be rather small and spanning an interval admissible by
the accuracy of the large-Nc limit.

The third argument is just a phenomenological observation for typi-
cal predictions of Tc in the bottom-up holographic models. For instance,
the original Herzog’s analysis of the vector Hard Wall (HW) holographic
model [5] with the ρ meson taken as the lowest state resulted in the predic-
tion Tc = 122 MeV [3]. If we apply this analysis to the scalar HW model
with f0(1500) as the lightest glueball, we will find Tc ≈ 150 MeV. The lattice
simulations typically predict the lightest glueball near 1.7 GeV (1.6–1.7 GeV
as quoted in Particle Data reviews [15]). This value shifts the prediction
to Tc ≈ 170 MeV. So we may regard the interval Tc = 150–170 MeV as a
prediction of the HW model in the glueball channel. We find remarkable
that exactly this interval was found in the modern lattice simulations with
dynamical quarks [19].

We will consider scalar glueballs and vector mesons in parallel in order
to demonstrate in detail the emergent differences.

Let us introduce the 5D holographic action with a universal gravitational
part and a matter part to be specified, it has an AdS related metric gMN

(g = det gMN )

S =

∫
d4xdz

√
−gf2(z) (Lgravity + Lmatter) , (1)

Lgravity = − 1

2kg
(R− 2Λ) . (2)

Here, kg is the coefficient proportional to the 5D Newton constant, R is the
Ricci scalar and Λ is the cosmological constant. The choice of the dilaton
background, f(z), distinguishes possible holographic models. They differ as
well by the interval the z coordinate spans. For now, we assume z ∈ [0, zmax],
though zmax =∞ is possible and will be of the main interest in the present
work as it corresponds to the SW model.
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The assessment of the critical temperature is related to the leading
contribution in the large-Nc counting, that is the Lgravity part scaling as
1

2kg
∼ N2

c , while Lmatter scales as Nc. According to [3], the deconfinement in
AdS/QCD occurs as the Hawking–Page phase transition that is a transition
between different gravitational backgrounds. We call the order parameter
of this transition ∆V .

V s are the free action densities evaluated on different backgrounds corre-
sponding to two phases. First, the confined phase. It is given by the thermal
AdS of radius R and defined by the general AdS line element

ds2Th =
R2

z2
(
dt2 − d~x 2 − dz2

)
(3)

with the time direction restrained to the interval [0, β]. The metric of
the Schwarzschild black hole in AdS describes the deconfined phase and
is given by

ds2BH =
R2

z2

(
h(z)dt2 − d~x 2 − dz2

h(z)

)
, (4)

where h(z) = 1 − (z/zh)4 and zh denotes the horizon of the black hole.
The corresponding Hawking temperature is related to the horizon as T =
1/(πzh).

The cosmological constant in 5D AdS is Λ = −6/R2, and both these
metrics are the solutions of the Einstein equations. They provide the same
value of the Ricci scalar R = −20/R2. Hence, the free action densities differ
only in the integration limits

VTh(ε) =
4R3

kg

β∫
0

dt

zmax∫
ε

dzf2(z)z−5 , (5)

VBH(ε) =
4R3

kg

πzh∫
0

dt

min(zmax,zh)∫
ε

dzf2(z)z−5 . (6)

The two geometries are compared at z = ε, where the periodicity in the time
direction is locally the same, i.e. β = πzh

√
h(ε). Then, we may construct

the order parameter for the phase transition

∆V = lim
ε→0

(VBH(ε)− VTh(ε)) . (7)

The thermal AdS is stable when ∆V > 0, otherwise the black hole is stable.
The condition ∆V = 0 defines the critical temperature Tc at which the
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transition between the two phases happens. Equation (7) yields zh as a
function of the model-dependent parameters — zmax and/or those possibly
introduced in f(z). We must appeal to the matter sector Lmatter to give
physical meaning to these parameters and to connect Tc to a particular type
of a holographic model.

As was recently noticed in Ref. [12], the SW background is not fixed
by the form of linear spectrum as one can find an infinite number of one-
dimensional potentials leading to identical spectrum of normalized modes.
The corresponding family of potentials is referred to as isospectral potentials.

In brief, the problem for mass spectrum in the bottom-up holographic
models can be reduced to a one-dimensional Schrödinger equation

−ψ′′n(z) + V̂(z)ψn(z) = M2(n)ψn(z) , (8)

where V̂(z) is the Schrödinger potential which depends on the 5D dilaton
background f2(z), metric, and spin. A particular form of the Schrödinger
potential defines the eigenvalues of Eq. (8) and hence the mass spectrum
M(n). In the case of SW models, it is a potential similar to the one that ap-
pears when considering the radial part of the wave function of a 2D harmonic
oscillator system.

According to [12] and the references therein, there is the following isospec-
tral transformation between VJ(z) and V̂J(z):

V̂J(z) = VJ(z)− 2
d2

dz2
ln[IJ(z) + λ] . (9)

This technique allows one to generate a family of dilaton functions f(z)

appearing in V̂J(z), each member assigned to the value of the parameter λ.
The case of λ =∞ corresponds to the original VJ(z). The function IJ(z) is
defined through the ground eigenstate of VJ , ψ0, and is given by

IJ(z) ≡
z∫

0

ψ2
0

(
z′
)

dz′ . (10)

Different λ provide slightly different form of the potential, but the eigenval-
ues of Eq. (8) and, hence, the spectrum remain the same.

The main problem we studied can be formulated as follows: Does isospec-
trality entail isothermality (i.e. identical predictions for Tc)? In the general
case, the answer turns out to be negative. However, there is one important
exception: If model parameters are fixed from the scalar glueball channel
within the generalized SW holographic model of Refs. [20, 21] (which is able
to reproduce accurately the glueball radial spectrum), then an isospectral



38 S.S. Afonin et al.

family of models leads to almost identical predictions for the deconfinement
temperature. The typical predictions lie in the range of Tc ' 175± 15 MeV
which agrees very well with modern unquenched lattice estimations. The
details of further continuation of the reported analysis are contained in
Ref. [22, 23].

The present work was supported by the Saint-Petersburg State Univer-
sity travel grant (Id: 36042146).
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