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In this paper, we review our recent series of works where we determine
the parameters of light strange resonances using data on πK → πK and
ππ → KK̄ and model-independent dispersive methods or techniques based
on complex analysis. We also advance some preliminary results on a model-
independent determination of the κ or K∗

0 (700) resonance parameters.
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1. Introduction

Most of the information on strange resonances below 2 GeV comes from
πK scattering experiments. Unfortunately, this process is only observed in-
directly as a sub-process in πN → πKN ′ and is plagued by large systematic
uncertainties leading to conflicting data sets. In addition, the parameters
of these resonances are affected by large model dependencies due to the use
of simple models. The most extreme case is the lightest strange resonance,
the so-called κ or K∗0 (700) meson, whose very existence has been the mat-
ter of intense debate for over almost four decades. Actually, even today,
the κ/K∗0 (700) “Needs Confirmation” according to the Review of Particle
Physics [1].

The only mathematically rigorous and process-independent feature of a
resonance is its associated pole sitting in the second Riemann sheet of the
complex plane of any amplitude in which the resonance appears. The pole
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position is related to the mass and width of the resonance by √spole '
MR − iΓR/2. When the resonance is narrow, this pole lies near the real
or physical axis and, if the resonance is isolated from other resonances or
analytic structures, it is seen in experiment in the form of a characteristic
peak. In such cases, simple models that describe the data in the vicinity
of the peak, like the familiar Breit–Wigner formula, can provide good ap-
proximations to the pole position. However, when resonances are wide, or
overlap with other resonances, or lie near threshold cuts and other analytic
or dynamical structures, simple models become unreliable to determine the
pole position or even the very existence of a resonance.

All those problems can be overcome by taking rigorously into account
the analytic structure of the singularities that appear in amplitudes. These
give rise, through Cauchy’s Integral Formula, to integral relations known as
dispersion relations. In this paper, we review our recent use of such disper-
sion relations as constrains to obtain parameterizations of πK → πK and
ππ → KK̄ data that can be use as input later to obtain model-independent
determinations of strange resonances.

2. Our series of works

Hence, over a series of works, we have followed our aim of determining the
existence and parameters of strange resonances from the existing data avoid-
ing model dependencies. Thus, in [2], we first obtained simple unconstrained
fits to πK → πK data on S, P,D, F partial waves up to 1.8 GeV, paying
particular attention to systematic uncertainties, and showed that they lead
to inconsistencies with Forward Dispersion Relations (FDR). However, we
were able to provide a set of Constrained Fits to Data (CFD) that satisfies
a complete isospin set of FDR up to 1.6 GeV.

Unfortunately, FDRs do not provide a continuation to the complex plane
for partial waves. Nevertheless, we made use of a powerful technique [3]
based on the convergence on the complex plane of series of Padé approxi-
mants built from information on the real (physical) axis. The relevance of
this method is that it does not rely on a specific parameterization choice for
the resonance pole, thus avoiding such a model dependence. For instance,
it does not assume that the residue is fixed by a Breit–Wigner-like formula
once the pole position is known, as it was previously done in most stud-
ies of strange resonances below 2 GeV. Of course, the drawback is that we
cannot calculate an infinite series of Padés, but some truncation is needed.
Nonetheless, the pole determination becomes rather unstable with just a few
Padés and that effect becomes a systematic uncertainty. The other impor-
tant feature of this method is that it can be used both in the elastic, and
more importantly, the inelastic region. Thus, the final result for the poles we
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obtained in [4] using this method for πK scattering in the inelastic region are
shown in Fig. 1. Hollow symbols represent Breit–Wigner-like parameteriza-
tions and solid symbols stand for the T-matrix poles. For references, see the
RPP [1]. Most of the spread in previous values is due to model dependence
that can be avoided with the Padé sequence method.

Fig. 1. From left to right and top to bottom, pole positions of the K∗
0 (1430),

K∗
1 (1410), K∗

2 (1430), K∗
3 (1780) obtained from fits to data constrained with For-

ward Dispersion Relations and a sequence of Padé approximants for the analytic
continuation to the complex plane. We plot the determinations listed in the RPP
(see references therein) and the final result comes from [4]. Figures are from [4].

In the elastic region, even our simple CFD parameterization, which is
constructed piecewise, yields a fairly reasonable pole when extrapolated
naively to the complex plane. It is labelled Conformal CFD in Fig. 2. Of
course, that relies on a particular parameterization and has some model de-
pendence. In the figure, it is particularly evident that this resonance, being
very wide, has an associated pole very deep in the complex plane. As a
consequence, there is a big deviation when using inappropriately the Breit–
Wigner parameterization or any of its variants (hollow symbols), which rely
on the narrow resonance approximation. More sound T-matrix pole deter-
minations use analytic or dispersive methods (solid symbols) that may also
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include chiral symmetry constraints (Adler zeros at least or some matching
with Chiral Perturbation Theory). Actually, we also show the best dis-
persive determination obtained in [5]. This is a very rigorous analysis using
partial-wave hyperbolic dispersion relations to continue to the complex plane
a numerical solution (not a fit to data) of the Roy–Steiner equations. De-
spite this rigorous result the RPP still considered that the κ, still called
K∗0 (800) in 2016, “Needs Confirmation”.

Fig. 2. (Colour on-line) Preliminary result for the κ/K∗
0 (700) pole from a Roy–

Steiner analysis of a constrained fit to data. For comparison, we show the T-matrix
poles listed in the RPP [1] (see references therein). The grey rectangle corresponds
to the present uncertainty estimated in the RPP [1]. The “Pelaez–Rodas” poles
and the values quoted in the inset rectangle are still preliminary.

Remarkably, we have also shown in [4] that the Padé technique described
above yields a pole for the controversial κ/K∗0 (700) when using as input
our constrained fits to data in [2]. This one is labelled “Padé result” in
Fig. 2. The fact that this result, with its very reduced model dependence,
agrees so well with the dispersive prediction of [5] leads to the κ changing its
name at the 2018 RPP revision from K∗0 (800) to its present denomination
K∗0 (700). However, even with this additional piece of evidence, it still “Needs
Confirmation” in the 2018 RPP [1].

Incidentally, we showed in [6] that using our CFD or Padé pole position
as the only input for a dispersive representation of the Regge trajectory,
the resulting slope of the κ/K∗0 (700) trajectory does not come out linear
with respect to the mass squared and has a magnitude much smaller that of
ordinary mesons. This is an additional model-independent piece of evidence
supporting the non-qq̄-dominant nature of the κ/K∗0 (700) and, therefore, of
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the light scalar-meson nonet. This is a consequence not only of being a wide
resonance, but of its pole residue (i.e. its coupling to πK), being related
to the mass and width differently than for ordinary resonances (generically
well-described with simple Breit–Wigner-like formulas).

Thus, in order to provide the needed confirmation for the κ/K∗0 (700),
two of us are presently finishing an analysis of fits to data constrained with
partial-wave hyperbolic and fixed-t dispersion relations up to '1 GeV [8].
The use of dispersion relations takes into account correctly all analytic struc-
tures in πK partial waves, which are shown in Fig. 3. In that figure, it is
shown that in terms of the Mandelstam variable s, which is the relevant one
for analyticity arguments, the distance of the κ pole to the data in its nom-
inal mass region is similar to the distance to threshold, to the Adler zero
(a Chiral Symmetry requirement), or to the circular and left cuts. Thus,
for a rigorous and precise κ/K∗0 (700) pole determination, the contributions
for those structures are relevant. They can be correctly calculated using
dispersion relations with crossing built in, called the Roy–Steiner equations.

Fig. 3. (Colour on-line) Cut structure of the πK partial waves. Note that the pole
associated to the K∗(892) resonance in the lower half of the complex plane (in light
grey/blue) is very close to the real axis at its nominal mass. In contrast, the pole
of the κ/K∗

0 (700) (in black/red) is very deep in the complex plane and as close to
its nominal mass region in the real axis as to the threshold, the Adler zero, or the
circular and left cuts. A precise determination of the κ/K∗

0 (700) requires a careful
calculation of such effects.

Let us emphasize that in our present analysis we are using data in the
elastic region of the S-, P -, D-, F -waves and dispersion relations are used as
constraints, in contrast to [5] who found solutions for S- and P -waves only
but without input from data on those very same waves in the elastic region.
In order to complete this analysis, we have first obtained constrained fits to
data for ππ → KK̄ scattering [7]. Actually, we showed that some of the
data in the literature, as well as unconstrained fits to data, fail to satisfy
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hyperbolic dispersion relations. But once again, we provided Constrained
Fits to ππ → KK̄ Data (CFD), consistent with the dispersive representa-
tion, while describing data up to 1.47 GeV. Our fits extend up to 2 GeV, but
we showed that 1.47 GeV is the maximum applicability region of hyperbolic
dispersion relations.

In order to ensure that our work provides the rigorous confirmation
needed to finally settle the κ/K∗0 (700) discussion, we have included the
following improvements in our calculation. In particular, our isospin 1/2
P -wave describes the existing data, our ππ → KK̄ input has associated
uncertainties and satisfies the Roy–Steiner representation, our πK → πK
input satisfies FDRs up to 1.6 GeV, we have improved the Pomeron deter-
mination to be consistent with factorization of kaon–nucleon data. We have
also imposed partial-wave hyperbolic dispersion relations on data fits. In ad-
dition, we have constrained the fits and calculated the pole with both one or
no subtractions for the asymmetric amplitude (only the subtracted one was
used before). All in all, we show our preliminary results for the κ/K∗0 (700)
pole in Fig. 2. It is remarkable to see that both determinations from one or
no-subtractions yield remarkably consistent poles, also with our Padé result
and with the previous Roy–Steiner prediction. Therefore, we think our work
provides the confirmation needed by the RPP to finally settle the existence
and parameters of the κ/K∗0 (700) meson and complete the members of the
light scalar nonet.
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