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RECENT JPAC ANALYSIS OF η(′)π RESONANCES∗
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In this paper, we review a recent analysis of the η(′)π system using
COMPASS data. The extracted relative phases and intensities are fitted
with a coupled-channel formalism fulfilling both unitarity and analyticity.
As a result, a robust extraction of a single isolated exotic π1(1600) is pro-
vided, decaying to both η(′)π final states, together with the determination
of the resonance parameters of the a2(1320) and a′2(1700). No statistical
significance for a second exotic state is found.
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1. Introduction

Describing the hadron structure in terms of quarks and gluons is the key
to our understanding of Quantum Chromodynamics (QCD). Even though
most of the observed mesons can be classified as qq̄ states, QCD has a much
richer spectrum [1]. Several QCD-based models predict states with explicit
gluonic degrees of freedom, also known as hybrids [2], which have also been
supported by Lattice QCD calculations [3]. A single state with the following
quantum numbers JPC(IG) = 1−+(1−) is expected below 2 GeV. Neverthe-
less, experiments claimed two different states to exist, the first π1(1400) de-
caying into ηπ, and the second π1(1600) decaying into ρπ and η′π channels.
Recent high statistic analyses coming from COMPASS confirmed a peak in
both ρπ and η′π at around 1.6 GeV [4, 5] and another structure in ηπ, close
to 1.4 GeV [6]. However, no coupled-channel analysis was performed by
experimental collaborations.

In [7], we studied the spectrum of both the η(′)π D- and P -waves from the
COMPASS data with a coupled-channel formalism, extending the method
in our previous analysis [8]. As a result, the existence of a single π1 pole
decaying to both channels is obtained, together with the determination of
the resonance parameters of the a2(1320) and a′2(1700).
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2. Data and model description

We analyzed the data of both P and D partial waves from the COM-
PASS Collaboration [6], extracted from a mass-independent analysis of πp→
η(′)πp, where the energy of the pion beam in the lab frame is 191 GeV. Due
to this highly energetic beam, most of the events are produced in the forward
direction, with around 90% lying close to the lower limit of the measured
transferred momentum squared −t1 ∈ [0.1, 1] GeV2. The data is extracted
up to 3 GeV, however, there are several reasons [7] why we decided to discard
all data points above roughly 2 GeV, however, it is worth noticing that all
relevant resonances appear far below that energy region.

Recently, COMPASS has published the 3π partial-wave analysis [4], in-
cluding the exotic 1−+ partial wave in the ρπ channel. Nonetheless, the
extraction of the resonance pole in this channel is hindered by the Deck
mechanism [9, 10]. It is worth noticing, as discussed in [8], that neglecting
additional channels does not affect the pole position in cases like the one we
are studying, so that we will only consider η(′)π channels.

Due to the forward nature of the πp→ η(′)πp process, it is Pomeron (P)
dominated at high energies, which allows us to factorize the πP → η(′)π
process. It resembles a helicity partial wave amplitude aJi (s) for fixed t1,
with i = η(′)π the final state, J the angular momentum of the final state
and s its invariant mass squared. The Pomeron must be a spin-one particle
in order to explain the approximately constant hadron cross sections at
high energies. Taking into account the fact that both angular momentum
projectionsM = ±1 are related through parity, we drop the Pomeron helicity
index. We finally fixed the transferred momentum to teff = −0.1 GeV2 for
simplicity, although it would be varied to estimate its systematic effect.

We parameterize the amplitudes following the coupled-channel N/D for-
malism

aJi (s) = qJ−1pJi
∑
k

nJk (s)
[
DJ(s)

−1
]
ki
, (1)

where pi = λ1/2(s,m2
η(′)
,m2

π)/(2
√
s) is the η(′)π momentum, q = λ1/2(s,m2

π,

teff)/(2
√
s) the π beam momentum in the η(′)π rest frame, and λ(a, b, c) is

the Källén function. The numerator polynomials nJk (s) incorporate exchange
“forces” in the production process (left-hand cuts), and so are smooth func-
tions of s in the physical region. The DJ(s) matrix contains the right-hand
cuts constrained by the s-channel unitarity of η(′)π scattering.

We use an effective expansion in the Chebyshev polynomials for the
numerators nJk (s). A customary parameterization of the denominator is
given by
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DJ
ki(s) =

[
KJ(s)

−1
]
ki
− s

π

∞∫
sk

ds′
ρNJ

ki (s′)

s′(s′ − s− iε)
, (2)

where sk is the threshold in channel k and

ρNJ
ki

(
s′
)

= δki
λJ+1/2

(
s′,m2

η(′)
,m2

π

)
(s′ + sL)2J+1+α

(3)

is an effective description of the left-hand cuts in η(′)π → η(′)π scattering,
with the right kinematical features, where sL is fixed at the hadronic scale
sL ∼ 1 GeV2. Finally,

KJ
ki(s) =

∑
R

gJ,Rk gJ,Ri
m2
R − s

+ cJki + dJki s (4)

with cJki=cJik and dJki=dJik, is a standard parameterization for the K-matrix
formalism. In the D-wave we explicitly included 2 K-matrix poles, and
one single K-matrix pole in the P -wave. The numerator of both channels
and waves is described by a third-order polynomial, and we set α = 2 in
Eq. (3). The remaining 37 parameters are fitted to data. The best fit has
χ2/d.o.f. = 162/122 = 1.3, which, as shown in Fig. 1 is in good agreement
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Fig. 1. (Color online) Fits to the ηπ (upper line) and η′π (lower line) data from
COMPASS [6]. We shown intensities of P - (left), D-wave (center), and relative
phase (right). The solid line and gray/green band show the result of the fit and
the 2σ confidence level obtained by the bootstrap analysis. The errors shown are
statistical only.
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with data. Indeed, a single K-matrix pole in the P -wave correctly describes
the two different peaks in the η(′)π channels. The statistical uncertainties
were estimated using the bootstrap technique.

Once the best fit is obtained, the DJ(s) matrix in Eq. (2) must be con-
tinued through the unitarity cut into the next Riemann sheet to determine
the resonant poles. These poles sP in the amplitude appear when the de-
terminant of DJ(sP) vanishes. As the behavior in the real axis is driven
directly by nearby poles, the ones appearing close to the unitarity cut will
be identified as resonances. Even though it is customary to relate the num-
ber of K-matrix poles to the number of resonances, it is not possible to
determine it using a coupled-channel formalism. Appearance of spurious
poles far from the physical region is likely. However, we did identify the
physical poles by testing their stability against different forms of the pa-
rameterization and data resampling. We study the resonance poles in the
m ∈ [1, 2] GeV and Γ ∈ [0, 1] GeV region, where we define m = Re

√
sP

and Γ = −2Im
√
sP. Two poles were found in the D-wave, identified as the

a2(1320) and a′2(1700), while a single isolated pole in the P -wave, the π1,
was obtained. The pole positions are shown in Fig. 2, while the resonance
parameters are listed in Table I. We also performed a pure background fit
for the P -wave, in order to estimate the significance of such resonance. The
global χ2 was larger by almost two orders of magnitude when no pole was
found, thus rejecting the possibility for the P -wave peaks to be generated
by non-resonant background.
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Fig. 2. (Color online) Positions of the poles identified as the a2(1320), π1, and
a′2(1700). The inner/green and outer/yellow ellipses show the 1σ and 2σ confidence
levels. The gray ellipses in the background show the variations of the pole position
due to the modification of the functional forms and the parameters of the model.

As is customarily done, more K-matrix poles were included to assess the
significance of new possible resonances, in particular we tested the two res-
onance PDG scenario for the P -wave. Both the global and local χ2 coincide
with the 1 K-matrix pole fit, on top of that, one of the two poles appears in
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a vast region in the complex plane depending on the initial values of the fit,
with a small coupling to both partial waves, while the second one is always
compatible with the single pole solution. We thus concluded that the for-
mer does not influence the real axis and is just unnecessary to describe the
data, however, it changes the behavior of the phase, producing a 180◦ jump
around 2 GeV, where no data exist.

TABLE I

Resonance parameters.

Poles Mass [MeV] Width [MeV]

a2(1320) 1306.0± 0.8± 1.3 114.4± 1.6± 0.0
a′2(1700) 1722± 15± 67 247± 17± 63

π1 1564± 24± 86 492± 54± 102

3. Systematic uncertainties

The method used to analyze the data does include some model dependen-
cies, of which we list here the systematic uncertainties studied. Regarding
the numerator, we first varied teff and the order of the polynomial. For the
denominator, we varied the values of the left-hand cuts sL and α in a con-
siderable range. Finally, we modified the Chew–Mandelstam term, in order
to describe the phenomenological t-channel exchange dominated by an in-
termediate particle, whose mass is considered to be of the order of 1 GeV,
explicitly this term reads

ρNJ
ki

(
s′
)

= δkiQJ(zs′) s
′−αλ−1/2

(
s′,m2

η(′) ,m
2
π

)
, (5)

where QJ(zs) is the second kind Legendre function, and zs′ the angle of
the elastic scattering. This function behaves at high energies as s−α, has
a left-hand cut starting at s = 0, a short cut between (s′ − mη(′))

2 and
(s′ + mη(′))

2, and an incomplete circular cut depending on the mass of the
exchanged particle, considered of the hadronic scale ' 1 GeV.

The shape of the dispersive integral in Eq. (2) is of course modified,
but the fit is unaffected under all these changes. The pole positions change
roughly within 2σ, as shown in Fig. 2, and the systematic uncertainties
are listed in Table I. No statistical significance of a second exotic state was
found.

4. Summary

A first coupled channel analysis of the η(′)π system measured at COM-
PASS [6] is presented by means of a K-matrix formula constrained by uni-
tarity and analiticity [7]. A single, isolated exotic pole π1, compatible
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with the Lattice QCD [3] suggestions is obtained in the ` = 1 partial
wave. Its mass and width are determined to be 1564 ± 24 ± 86 MeV and
492±54±102 MeV, respectively, while two ordinary mesons a2(1320) and the
a′2(1700) are found in the tensor partial wave. The systematic uncertainties
are obtained through the modification of both parameters and functional
forms of the parameterization.

A.R. wishes to thank the Excited QCD 2019 organizers for such a nice
conference. This work was partially supported by the U.S. Department
of Energy under grants No. DE-AC05-06OR23177 and No. DE-FG02-87ER
40365, and Ministerio de Ciencia, Innovación y Universidades (Spain) grant
FPA2016-75654-C2-2-P. A.R. would like to acknowledge the Universidad
Complutense of Madrid for a predoctoral fellowship.

REFERENCES

[1] B. Ketzer, PoS QNP2012, 025 (2012); C.A. Meyer, E.S. Swanson, Prog.
Part. Nucl. Phys. 82, 21 (2015); A. Esposito, A. Pilloni, A.D. Polosa, Phys.
Rep. 668, 1 (2016).

[2] D. Horn, J. Mandula, Phys. Rev. D 17, 898 (1978); N. Isgur, J.E. Paton,
Phys. Rev. D 31, 2910 (1985); M.S. Chanowitz, S.R. Sharpe, Nucl. Phys. B
222, 211 (1983) [Erratum ibid. 228, 588 (1983)]; A.P. Szczepaniak,
E.S. Swanson, Phys. Rev. D 65, 025012 (2002); S.D. Bass, E. Marco, Phys.
Rev. D 65, 057503 (2002).

[3] P. Lacock et al. [UKQCD Collaboration], Phys. Lett. B 401, 308 (1997);
C.W. Bernard et al. [MILC Collaboration], Phys. Rev. D 56, 7039 (1997);
J.J. Dudek et al. [Hadron Spectrum Collaboration], Phys. Rev. D 88, 094505
(2013).

[4] M. Aghasyan et al. [COMPASS Collaboration], Phys. Rev. D 98, 092003
(2018).

[5] M. Alekseev et al. [COMPASS Collaboration], Phys. Rev. Lett. 104, 241803
(2010).

[6] C. Adolph et al. [COMPASS Collaboration], Phys. Lett. B 740, 303 (2015).
[7] A. Rodas et al. [JPAC Collaboration], Phys. Rev. Lett. 122, 042002 (2019).
[8] A. Jackura et al. [JPAC and COMPASS collaborations], Phys. Lett. B 779,

464 (2018).
[9] R.T. Deck, Phys. Rev. Lett. 13, 169 (1964).
[10] G. Ascoli et al., Phys. Rev. D 9, 1963 (1974).

http://dx.doi.org/10.22323/1.157.0025
http://dx.doi.org/10.1016/j.ppnp.2015.03.001
http://dx.doi.org/10.1016/j.ppnp.2015.03.001
http://dx.doi.org/10.1016/j.physrep.2016.11.002
http://dx.doi.org/10.1016/j.physrep.2016.11.002
http://dx.doi.org/10.1103/PhysRevD.17.898
http://dx.doi.org/10.1103/PhysRevD.31.2910
http://dx.doi.org/10.1103/PhysRevD.31.2910
http://dx.doi.org/10.1016/0550-3213(83)90635-1
http://dx.doi.org/10.1016/0550-3213(83)90635-1
http://dx.doi.org/10.1016/0550-3213(83)90561-8
http://dx.doi.org/10.1103/PhysRevD.65.025012
http://dx.doi.org/10.1103/PhysRevD.65.057503
http://dx.doi.org/10.1103/PhysRevD.65.057503
http://dx.doi.org/10.1016/S0370-2693(97)00384-5
http://dx.doi.org/10.1103/PhysRevD.56.7039
http://dx.doi.org/10.1103/PhysRevD.88.094505
http://dx.doi.org/10.1103/PhysRevD.88.094505
http://dx.doi.org/10.1103/PhysRevD.98.092003
http://dx.doi.org/10.1103/PhysRevD.98.092003
http://dx.doi.org/10.1103/PhysRevLett.104.241803
http://dx.doi.org/10.1103/PhysRevLett.104.241803
http://dx.doi.org/10.1016/j.physletb.2014.11.058
http://dx.doi.org/10.1103/PhysRevLett.122.042002
http://dx.doi.org/10.1016/j.physletb.2018.01.017
http://dx.doi.org/10.1016/j.physletb.2018.01.017
http://dx.doi.org/10.1103/PhysRevLett.13.169
http://dx.doi.org/10.1103/PhysRevD.9.1963

	1 Introduction
	2 Data and model description
	3 Systematic uncertainties
	4 Summary

