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When an unstable ordinary quark–antiquark state couples strongly to
other low-mass mesons (such as pions, kaons, D-mesons, etc.), the quantum
fluctuations generated by the decay products dress the bare ‘seed’ q̄q state
and modify its spectral functions. The state is associated to a pole on the
complex plane. When the coupling to the decay products is sufficiently
large, a remarkable and interesting phenomenon takes place: dynamically
generated companion states (or poles) might emerge. Some resonances
listed in the PDG, such as the a0(980), the K∗0 (700), and the X(3872),
can be well-understood by this mechanism that we briefly review in these
proceedings. On the other hand, we show that the Y (4008) and Y (4260)
are not independent resonances (or poles), but manifestations of ψ(4040)
and ψ(4160), respectively.
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1. Introduction

The idea behind companion poles is quite simple: in the easiest sce-
nario, one starts with a single bare field with quantum numbers JPC which
corresponds to a well-defined q̄q state with a certain bare mass, typically
very close to the predictions of the quark model [1]. Then, a Lagrangian
in which this ‘seed’ state couples strongly to some standard mesons (such a
pions, kaons, D-mesons, ρ-mesons, . . . ) is written down. As a consequence,
mesonic loops dress the original state. The original pole on the real axis
moves down in the complex plane. Moreover, when the interaction is strong
enough, other poles can appear: these are dynamically generated companion
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poles. In some cases, such poles can be interpreted as additional resonances
and some of the supernumerary states listed in the PDG [2] can have such
an origin. A general feature of companion poles is that they fade away in the
large-Nc limit [3]: in fact, the coupling of the original q̄q state to other ordi-
nary mesons scales as 1/

√
Nc, therefore, the quantum fluctuations become

smaller and additional poles do not emerge.
The mechanism outlined above was described in Refs. [4, 5] in the con-

text of light scalar mesons. Later on, the concept of companion poles has
been revisited in detail in Ref. [6], in which the a0(980) is described as a
companion pole of the predominantly standard q̄q resonance a0(1450) and
where a detailed comparison with the previous works of Refs. [4, 5] is pre-
sented. In the last four years, the approach has been studied for various
states [7–11], as we shall discuss it in more detail in the next section (see
Table I). For related ideas about the emergence of companion poles, we refer
also to [12–15] and references therein.

2. Companion poles: status

In this section, we describe the present status of the approach and the
results obtained through its applications to resonances both in the light and
in the charmonium sectors.

In order to explain the idea, we consider two explicit examples. In the
first one, the seed state is the scalar state K∗0 , which decays to Kπ and —
after dressing — mainly corresponds to K∗0 (1430); in the second case, the
seed state is the c̄c bare field ψµ, which decays into DD and predominantly
corresponds to ψ(3770). The Lagrangians for these two systems are

LK∗
0

= aK∗−0 π0K+ + bK∗−0 ∂µπ
0∂µK+ + . . . , (1)

Lψ = igψψµ
(
∂µD+D− − ∂µD−D+

)
+ . . . , (2)

where the dots refer to other isospin combinations, see details in [7, 8]. In
both cases, the decay widths as a function of the ‘running’ mass of the
decaying particle can be expressed as

ΓK∗
0
(m) = Γ tl

K∗
0

(m)FΛ(m) ; Γψ(m) = Γ tl
ψ (m)FΛ(m) , (3)

where the tree-level part (tl) is obtained from the standard Feynman rules
for the local Lagrangian in Eqs. (1)–(2), while the quantity FΛ(m) is a ver-
tex function which takes into account the finite dimensions of the mesons.
It could be formally introduced already at the Lagrangian level by rendering
it nonlocal [16]. The function FΛ(m) should guarantee convergence of the
loops, thus FΛ(m → ∞) = 0 sufficiently fast. A typical choice, valid in the
reference frame of the decaying particle, is FΛ(m) = e−2k(m)/Λ, where k(m)
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is the modulus of the three-momentum of one of the outgoing decay prod-
ucts and Λ ' 0.5 GeV is the typical energy scale for the overlap of extended
mesons. Note, even if the vertex function cuts the three-momentum k,
Lorentz invariance is guaranteed [17].

One considers the propagator of the seed state dressed by loops of the
decay products. Its scalar part is

∆−1j (m) = m2 −M2
0,j +Πj

(
m2
)
, j = K∗0 , ψ , (4)

where Πj(m
2) is the loop function such that ImΠj(m

2) = mΓj(m). Since
the imaginary part is known, the loop function Πj(m

2) can be obtained
by dispersion relations. In the first Riemann sheet (IRS), Πj(m

2) is reg-
ular everywhere, a part from a cut along the real axis. When the cou-
pling constant(s) is (are) sent to zero, the so-called seed pole of ∆j(m) is
mseed = M0 − iε. For nonzero couplings, the seed pole mseed moves down
in the IIRS: the pole mass is Re[mseed] (usually, not far from M0) and the
decay width is −2 Im[mseed]. However, for coupling constant large enough,
there can be a second, dynamically generated companion pole

mcomp such that ∆−1j (mcomp)IIRS = 0 and mcomp 6= mseed . (5)

The companion pole has a completely different ‘movement’ on the complex
plane: for small coupling, it lies very far from the real axis and then it
approaches the real axis from below when the coupling increases. Eventually,
for very large coupling, it can be even closer to the real axis than the original
seed pole. (This is not the case for the two examples above, but it applies
for the a0-system, see below).

Next, one defines the spectral function as [18, 19]

dj(m) =
2m

π
Im[∆j(m)]→

∞∫
0

dj(m)dm = 1 . (6)

The normalization is a crucial property, since it allows to interpret dj(m)
as a mass probability density (for a detailed proof, see Ref. [20]). Note,
even when the companion pole is present, strictly speaking, there is only
one ‘state’ properly normalized to unity. Typically, the companion pole
generates an enhancement of the spectral function at low energies (or even a
second peak as for a0(980) and X(3872)). Note, the here outlined approach
is valid at the (resummed) one-loop level. Fortunately, it seems to be a good
approximation in hadron physics [21].

In Table I, we report on the present status of some resonances: for given
quantum numbers, the bare fields with the spectroscopic notation and q̄q
content, the resulting predominantly qq̄ resonances, and the companion poles
are listed. Then, below the table, we briefly discuss each case separately.
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TABLE I

Summary of light and heavy systems in which companion poles have been investi-
gated.

Bare field Main Predom. q̄q Companion
JPC n2S+1LJ decays pole [GeV] pole [GeV] Ref.

q̄q

a0 a0(1450) a0(980)
0++ 13P0 KK 1.456 0.970 [6]

ud̄, . . . πη, πη′ −i0.134 −i0.045

K∗0 K∗0 (1430) K∗0 (700)
0++ 13P0 Kπ 1.413 0.746 [7]

us̄, . . . −i0.127 −i0.262

ψ ψ(3770) —
1−− 13D1 DD 3.777 3.741 [8]

cc̄ −i0.0123 −i0.0018

ψ DD,DD∗ ψ(4040) —
1−− 33S1 D∗D∗, DsDs 4.053 3.934 [9]

cc̄ D∗sDs −i0.039 −i0.030

ψ DD,DD∗ ψ(4160) —
1−− 23D1 D∗D∗, DsDs 4.190 — [10]

cc̄ D∗sDs, D
∗
sD
∗
s −i0.035 —

χc,1(2P ) χc,1(2P )(?) X(3872)
1++ 23P1 DD∗ 3.995 3.87164 [11]

cc̄ −i0.036 −iε (virtual)

— a0(980) and a0(1450) [6]: One starts with a unique field a0 with a
bare mass of about 1.2 GeV coupled to light mesons according to the
constrains of chiral symmetry [22]. Then, upon including the loops,
a0(1450) is predominantly q̄q, and the resonance a0(980) is a dynami-
cally generated companion pole (for a detailed discussion of light scalar
mesons, see [15]). Quite remarkably, the loops are so strong that the
corresponding spectral function da0(m) contains two peaks.

— K∗0 (700) and K∗0 (1430) [7]: the seed state K∗0 lies well above 1 GeV.
K∗0 (1430) corresponds to the (dressed) q̄q state, while K∗0 (700) is dy-
namically generated. In the spectral function, there is no peak for
this state, but a slight low-energy enhancement. Recently, the exis-
tence of this non-conventional meson has been in the centre of many
investigations, e.g. Ref. [23]. The PDG2018 had re-named this state
as K∗0 (700) (previously, K∗0 (800)) and included in the summary table.
Our study clearly confirms the existence of this state and provides a
clear physical interpretation of its nature.
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— ψ(3770) [8]: the non-Breit–Wigner form of the spectral function is
caused by the loops. Also in this case two poles appear. Yet, the
dynamically generate pole is quite close to the seed one, hence no new
name for an independent state is assigned.

— ψ(4040) [9]: the bare c̄c state couples strongly to various D-mesons.
The spectral function is strongly distorted and two poles are generated,
just as for ψ(3770). The dynamically generated pole does not corre-
spond to the enhancement Y (4008) [24]. A broad distorted resonance-
like structure may emerge in the J/ψππ channel through the process
ψ(4040)→ DD∗ → J/ψππ (because the real part of the loop DD∗ is
peaked at the DD∗ threshold). Hence, Y (4008) is not an independent
state, but a DD∗-loop manifestation of ψ(4040).

— ψ(4160) [10] (actual mass: 4.191 GeV [2]): in this case, there is a
unique (relevant) pole. As before, the chain ψ(4160) → D∗sD

∗
s →

J/ψππ generates a resonance-like structure peaked at about 4.222 GeV
(this is the D∗sD∗s threshold where again the real part of the loop is
enhanced). This signal can be assigned to the Y (4260) (also called
ψ(4260) in the PDG [2]). Then, Y (4260) is not an independent reso-
nance, but a loop manifestation of the state ψ(4160) (and of its pole)
shifted of about 40 MeV in mass.

— X(3872) and χc1(2P ) [11]: a bare seed state χc1(2P ) gets dressed
by DD∗ loops. At the lowest D0D

∗
0 threshold, the spectral function

develops a very high and narrow peak: the X(3872). In the complex
plane, there is a virtual pole just below D0D

∗
0. The state χc1(2P )

has a well-defined pole, but the corresponding peak can fade away,
explaining the difficulty to measure it in experiments.

3. Conclusions

In this work, we have briefly reviewed the concept dynamical genera-
tion of companion poles and the status of some resonances on the basis of
this idea. Other resonances could also emerge as companion poles, as for
instance the state Ds(2317). Moreover, as for the Y (4008) and Y (4260),
other enigmatic Y states (see [25] for a review) could be not real, but ‘loop’
manifestation of conventional c̄c states.

The author thanks S. Coito, M. Piotrowska, T. Wolkanowski-Gans, and
D.H. Rischke for cooperations leading to the publications listed in Table I.
Moreover, the author acknowledges support from the National Science Cen-
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and No. 2018/29/B/ST2/02576.
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