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We consider massive scalar perturbations coupled to the Einstein ten-
sor, the so-called derivative coupling term, in the background of a Reissner–
Nordström–AdS black hole. By studying the scalar potential, we identify
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the possible existence of instabilities due to the appearance of a negative
well. This suspicion is confirmed through the calculation of the corre-
sponding quasinormal modes. We show that there is a critical value of the
derivative coupling that triggers this instability and that this critical value
also depends on the black hole charge.
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1. Introduction

Scalar–tensor theories modifying Einstein gravity have been intensely
studied in the last years. One of these theories, developed by Horndeski in
1974 [1], produces second order field equations and is built of a collection of
Lagrangians which include first derivatives of a scalar field Φ. One of these
terms corresponds to the kinetic coupling of a scalar field to Einstein tensor.
The so-called derivative coupling (DC) term has proved to be useful in cos-
mological contexts [2] as it can mimic a friction term in the early inflationary
evolution, provides a mechanism to suppress heavy particle overproduction
after inflation [3], and can play the rôle of a cosmological constant intro-
ducing a new scale in the model. Moreover, several stability studies have
been done using the DC term [4] yielding superradiance phenomena [5] and
quasiresonant modes [6].

The aim of this work is to study the effect on the dynamics of the scalar
field due to possible instabilities in AdS space owing to its natural boundary.
We will find the critical value of the DC parameter that marks the transition
between stability and instability. At the same time, we will analyze the
interplay of DC and AdS scales.

2. Perturbation setup

We consider a perturbation given by a massive scalar field coupled to
the Einstein tensor as

Lpert = −
√
−g
2

[
(gµν − ηGµν) ∂µΦ∂νΦ+m2Φ2

]
(1)

in a spherically symmetric background given by

ds2 = −F (r) dt2 + F (r)−1 dr2 + r2 dΩ2 , (2)

where dΩ2 is the 2-sphere line element. The perturbation equation of motion
obtained from Eq. (1) can be decoupled from the angular part by writing
the scalar field as

Φ(t, r, θ, ϕ) =
∑
l,m

Z(r, t)

r(1 + ηA)1/2
Yl,m(θ, ϕ) , (3)
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such that the remaining equation, once accommodated in a Schrödinger-like
form, reads

−∂
2Z

∂t2
+
∂2Z

∂r2∗
− Vs(r)Z = 0 . (4)

The effective potential Vs is given by

Vs(r) =
F

(1+ηA)

[
l(l + 1)

r2
(1−ηB) +m2+

F ′

r
(1 + ηA)

]
+F 2Vη(r) , (5)

Vη(r) =
η

1 + ηA

(
A′′

2
+
A′F ′

2F
+
A′

r

)
− 1

4

(
ηA′

1 + ηA

)2

,

and the functions A and B are, respectively,

A(r) =

(
−F

′

r
+

1− F
r2

)
, B(r) = A(r)− 1

2
R . (6)

We will work with a Reissner–Nordström (RN)–AdS black hole with metric
coefficient given by

F = 1− 2M

r
+
Q2

r2
+
r2

L2
. (7)

The field transformation in Eq. (3) that we used to decouple the scalar
equation has a discontinuity at

rd =

(
ηQ2

3η
L2 − 1

)1/4

. (8)

Thus, we will choose the position of the event horizon such that rh > rd.

3. Results

3.1. Effective potentials

The potential in Eq. (5) is plotted in Fig. 1. It depends on 4 parame-
ters, multipole number l, DC parameter η, perturbation mass m, and black
hole charge Q. The most interesting features appear when we turn on the
DC parameter. As η grows, the potential develops a negative well, initially
hidden by the event horizon when η is small, which is shifted outside rh for
intermediate values of η. Thus, we see that η triggers the well emergence
that can eventually lead to instabilities in the background metric. In fact,
when the well becomes deep enough to provoke an instability, η reaches a
critical value ηc that can be numerically calculated. In addition, the ef-
fect of the black hole charge and multipole number is to deepen the well.
Finally, the effect of the scalar field mass as it grows is to make the well
shallow. Therefore, the most interesting case where we can find instabilities
corresponds to massless perturbations.
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Fig. 1. Effective scalar potential with parameters M = L/10 = 1 and m = 0. Left
panel: different values of η with l = 1 and Q = 0.2. Right panel: different values
of charge Q, with l = 0 and η = 30.

3.2. Quasinormal modes

We show our results in Fig. 2. From the left panel, we see that the field
evolution for multipole number l = 0 is always stable. For l 6= 0, there is a
critical value of η for which the evolution becomes unstable. However, after
certain value of η, stability returns and the field has a bounded evolution.
The right panel shows the evolution for different charges. For Q less than
a threshold value Qext, the field decays with a ring-down signal and as Q
approaches Qext, the field has an exponential decay. After the threshold
value, the field destabilizes the geometry and a phase transition is expected.
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Fig. 2. Scalar field behavior for an AdS charged black hole with varying η for
M = L/10 = 5Q = 1 (left) and different charges for M = L/10 = η/20 = 1 (right).

3.3. Critical η

The critical value ηc where the field evolution destabilizes depends on
the parameters of the geometry, especially on the multipole number l. Some
of these values are shown in Table I. It is possible to analyze this critical
behavior by expanding the potential near the horizon as Vrh ∼ F (r)Ω(r),
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TABLE I

Critical value of η for different charges of the geometry (in unities of Qext) and mul-
tipole numbers. For the geometry parameters, Qext ∼ 0.99518. The corresponding
values of ηlim are also shown for reference.

10M = L = 10

l Q = 0.1 Q = 0.2 Q = 0.4 Q = 0.6 Q = 0.8 Q = 0.95 Q = 0.99517

1 33.15
±0.05

32.75
±0.05

30.65
±0.05

26.35
±0.05

18.25
±0.05

7.95
±0.05

1.75
±0.05

2 33.05
±0.05

32.15
±0.05

28.65
±0.05

22.35
±0.05

13.45
±0.05

5.25
±0.05

1.25
±0.05

3 32.95
±0.05

31.85
±0.05

27.45
±0.05

20.35
±0.05

11.55
±0.05

4.35
±0.05

1.15
±0.05

Lowest limit of stability for large l using Eq. (11)

∞ 32.54 30.29 22.91 14.44 7.10 2.63 0.92

where

Ω(rh) =
m2r2h+l(l+1)

[
1−
(

3
L2 +

Q2

r4h

)
η
]

r2h

[
1+
(
− 3
L2 + Q2

r4h

)
η
] +

F ′(rh)

rh
− 2Q2ηF ′(rh)

r5h

[
1+
(
− 3
L2 + Q2

r4h

)
η
] .
(9)

Since F (r) is a positive function, the change of sign in the potential comes
from Ω(rh) and occurs at

η0 ∼
−3L2r8h + L4r4h

[
Q2 − r2h

(
1 + l(l + 1) +m2r2h

)](
L2Q2 + 3r4h

) {
−3r4h + L2

[
Q2 − r2h(1 + l(l + 1))

]} . (10)

When m = 0, Eq. (10) becomes independent of l,

ηlim ∼
L2r4h

L2Q2 + 3r4h
, (11)

which also corresponds to the limit l→∞. Moreover, our calculations show
that as l increases, ηc approaches ηlim, as we can see in Table I.

4. Conclusions

We studied the influence of a derivative coupling perturbation in a RN–
AdS background. By analyzing the effective potential of the equation of mo-
tion of the scalar field perturbation, we determined the influence of multipole
number l, perturbation mass m, black hole charge Q, and DC parameter η
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on the perturbation dynamics. Massless perturbations display a potential
with a negative well that is shifted out of the event horizon by η and whose
depth depends on the black hole charge and multipole number. The pres-
ence of this well opens the possibility of having instabilities, a fact that was
confirmed by our numerical results of the field evolution. For l = 0, no
instability was found, while for l 6= 0, instabilities appear at a critical value
of DC parameter ηc, and keep for a certain range after which we recover
stability. This ηc strongly depends on the extremal value of the charge Qext.
As Q→ Qext, ηc decreases. We found that the transitions from stability to
instability and back may signal the scalarization of RN–AdS black hole [7].
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