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Due to the local curvature, the fermion condensate (FC) for a free Dirac
field on anti-de Sitter (adS) space becomes finite, even in the massless
limit. Employing the point splitting method using an exact expression for
the Feynman two-point function, an expression for the local FC is derived.
Integrating this expression, we report the total FC in the adS volume and
on its boundary.
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1. Introduction

Over the past couple of decades, the analysis of quantum field theory
(QFT) on the anti-de Sitter (adS) background space-time has received much
attention due to the conjectured adS/CFT correspondence [1]. Through this
conjecture, important insight into the properties of the quark–gluon plasma
formed in relativistic heavy-ion collisions was drawn [2].

Recent experiments performed by the STAR Collaboration revealed the
polarisation of the QGP in non-central collisions [3]. One mechanism that
could lead to this polarisation is the chiral vortical effect, due to the spin–
orbit coupling predicted through the Dirac equation [4].

In this contribution, we present a study of thermal states of fermions
undergoing rigid rotation on the anti-de Sitter space. The focus of this study
is the fermion condensate (FC) induced by the coupling to curvature. The
discussion is restricted to massless particles in the absence of interaction.
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2. Finite temperature expectation values

The line element of adS can be written as

ds2 =
1

cos2 ωr

[
−dt2 + dr2 +

sin2 ωr

ω2

(
dθ2 + sin2 θdϕ2

)]
, (1)

where t ∈ (−∞,∞)1, 0 ≤ ωr < π
2 and the inverse radius of curvature ω

is related to the Ricci scalar through R = −12ω2. We further employ the
following Cartesian gauge tetrad [5]:

et̂ = cosωr ∂t , eı̂ = cosωr

[
ωr

sinωr

(
δij −

xixj

r2

)
+
xixj

r2

]
∂j , (2)

by which the local gamma matrices γµ = eµα̂γ
α̂ are written in terms of the

Minkowski ones, which satisfy {γα̂, γσ̂} = −2ηα̂σ̂. At finite temperature β−10
and in rigid rotation with angular velocity Ω = Ωk, we have [6]〈

Ψ̂ Ψ̂
〉
β0,Ω

= Z−1tr
(
ρ̂Ψ̂ Ψ̂

)
, ρ̂ = e−β0(Ĥ−ΩM̂

ẑ) , (3)

where Ĥ = i∂t, M̂ ẑ = −i∂ϕ + S ẑ, S ẑ = i
2γ

1̂γ2̂ and Z = tr(ρ̂).
To evaluate Eq. (3), we take the point-splitting approach, by which [7]〈

Ψ̂ Ψ̂
〉
β0,Ω

= − lim
x′→x

tr
[
iSF
β0,Ω

(
x, x′

)
Λ
(
x′, x

)]
, (4)

where SF
β0,Ω

(x, x′) is the thermal two-point function and Λ(x, x′) is the
bispinor of parallel transport, given by [11]

Λ
(
x, x′

)
=

sec(ωs/2)√
cosωr cosωr′

×

[
cos

ω∆t

2

(
cos

ωr

2
cos

ωr′

2
+ sin

ωr

2
sin

ωr′

2

x · γ
r

x′ · γ
r′

)

+ sin
ω∆t

2

(
sin

ωr

2
cos

ωr′

2

x · γ
r

γ t̂ + sin
ωr′

2
cos

ωr

2

x′ · γ
r′

γ t̂
)]

. (5)

Using the property ρ̂Ψ̂(t, ϕ)ρ̂−1 = e−β0ΩS
ẑ
Ψ̂(t + iβ0, ϕ + iβ0Ω), together

with the imaginary time anti-periodicity of the two-point function [8], it is
possible to compute SF

β0,Ω
(x, x′) via [9]

SF
β0,Ω

(
x, x′

)
=

∞∑
j=−∞

(−1)je−jβ0ΩS
ẑ
SF
vac

(
t+ ijβ0, ϕ+ ijβ0Ω; t′, ϕ′

)
, (6)

1 We consider the covering space of adS.
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where SF
vac(x, x

′) is the vacuum two-point function. The above expression is
valid only when the vacua (β0 → 0) corresponding to the rotating (finite Ω)
and non-rotating (Ω = 0) cases coincide. This is ensured on adS when
|Ω| ≤ ω [10], which we assume to hold for the remainder of this paper.

Due to the maximal symmetry of adS, SF
vac(x, x

′) can be written as [12]

iSF
vac

(
x, x′

)
= [A(s) + B(s)/n]Λ

(
x, x′

)
, (7)

where nµ = ∇µs(x, x′) is the normalised tangent at x to the geodesic con-
necting x and x′, while the geodesic interval s is given through

cosωs =
cosω∆t

cosωr cosωr′
− cos γ tanωr tanωr′ , (8)

where γ is the angle between x and x′, such that cos γ = cos θ cos θ′ +
sin θ sin θ′ cos ∆ϕ. For massless fermions, the functions A and B are [11]

AcM=0 =
ω3

16π2

(
cos

ωs

2

)−3
, BcM=0 =

iω3

16π2

(
sin

ωs

2

)−3
. (9)

3. Analysis and conclusions

Without presenting the details of the computation, we find [10]

〈
: Ψ̂ Ψ̂ :

〉
β0,Ω

=

∞∑
j=1

(−1)j+1ω3(cosωr)4 cosh ωjβ0
2 cosh Ωjβ0

2

2π2
[
sinh2

(
ωjβ0
2

)
+cos2 ωr−sin2 ωr sin2 θ sinh2

(
Ωjβ0
2

)]2 .
(10)

The total FC can be obtained by integrating Eq. (10) over the whole space

V FC
β0,Ω =

∫
d3x
√
−g
〈

: Ψ̂ Ψ̂ :
〉
β0,Ω

=−
∞∑
j=1

(−1)j cosh
(
Ωjβ0
2

)
/ sinh

(
ωjβ0
2

)
cosh(ωjβ0)− cosh(Ωjβ0)

' 3ζ(3)T 3
0

ω (ω2 −Ω2)
−
(
3ω2 −Ω2

)
T0

6ω (ω2 −Ω2)
ln 2 +O

(
T−10

)
. (11)

On the boundary, the following result is obtained:

SFC
β0,Ω =

∫
dΩ
√
−g
〈

: Ψ̂ Ψ̂ :
〉
β0,Ω

' 7π3T 4

45(ω2−Ω2)3/2

 ω
Ω

tan−1

 Ω/ω√
1− Ω2

ω2

+

√
1−Ω

2

ω2

+O
(
T 2
)
. (12)
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Fig. 1. Dependence of (a) V FC
β0,Ω

and (b) SFC
β0,Ω

/ω with respect to (1 − Ω2/ω2)−1,
in logarithmic scale. The dotted lines and symbols are numerical results obtained
using Eq. (10), while the analytic curves correspond to Eqs. (11) and (12).

Both V FC
β0,Ω

(11) and SFC
β0,Ω

are amplified due to the rotation through the
prefactors (1 − Ω2/ω2)−1 and (1 − Ω2/ω2)−3/2, respectively. Figures 1 (a)
and (b) show the dependence of V FC

β0,Ω
and SFC

β0,Ω
on (1 − Ω2/ω2)−1, for

various values of the temperature T0 = β−10 . It can be seen that the analytic
results (11) and (12) (shown with solid black lines) match well the numerical
results (dotted lines and symbols) computed using Eq. (10).
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