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A relation between the canonical Hamilton—Jacobi (HJ) theory and
the De Donder—Weyl Hamilton—Jacobi (DWHJ) theory in the calculus of
variations is studied. In the case of a scalar field in curved space-time
and in general relativity in Gaussian coordinates, we show how the func-
tional derivative canonical HJ equation is derived from the partial derivative
DWHJ equation. The derivation is based on the split between space and
time and the Ansatz which relates the HJ functional eikonal on the infinite
dimensional space of initial data with the DWHJ eikonal functions on the
finite dimensional space of field variables and space-time coordinates.
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1. Introduction

The De Donder—Weyl (DW) theory [1-5] is a generalization of the Hamil-
tonian formulation to field theory which does not distinguish between space
and time. Given a Lagrangian L(y“,yj;,z") depending on the space-time
variables x, field variables y*, and their first jet coordinates y¢ (such that a
restriction to a field configuration y* = y*(2") implies: yj; = dy*(x)/0z* =:
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9,y"), a Legendre transformation to new variables pj, := g yLu (polymomenta)
m

and H := y%psg — L (the DW Hamiltonian) enables us to write the Euler—
Lagrange field equations in the DW Hamiltonian form
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provided the regularity condition det ( ajf 3Lyb> # 0 is fulfilled.
m v

The dynamical content of the DW Hamiltonian formulation can be also
represented by the DW Hamilton—Jacobi (DWHJ) equation |1, 2, 4]

oS+
n AT
0uS —I—H(y,aya,aj> 0. (2)

This partial differential equation for the eikonal functions S*(y®, z#) deter-
mines the solutions of (1) by the embedding conditions
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Geometrical aspects of the DWHJ equation have been recently studied in
[6, 7]. The historical role of the HJ formulation of mechanics in the discovery
of the Schrédinger equation [8] makes the DWHJ formulation particularly
interesting. In fact, within the framework of precanonical quantization which
uses the DW theory instead of the canonical Hamiltonian formalism [9, 10],
it was already shown that the DWHJ equation for scalar fields follows from
the corresponding precanonical generalization of the Schrodinger equation
in the classical limit [11]. Precanonical quantization has been applied to the
quantum Yang—Mills theory [12-14], quantum scalar field theory in curved
spacetime [15-18|, and to quantization of gravity in metric [19, 20] and
vielbein variables [21-25].

To understand the connection between this approach and the canonical
quantization of general relativity [26, 27|, we investigate here a relation-
ship between the DWHJ equation for general relativity |1, 28, 29] and the
canonical HJ equation [30] that has been used to explore the semiclassical
approximation of canonical quantum gravity [31-33|. In Section 2, we estab-
lish a relation between the DWHJ equation and the canonical HJ equation
for a scalar field in a general curved space-time. In Section 3, we restrict
ourselves to Gaussian coordinates and derive the canonical HJ equation for
general relativity from the DWHJ formulation. Our results generalize the
relation between the DWHJ and the canonical HJ equation in flat space-time
found by Kanatchikov [34] and applied to the bosonic string by Nikoli¢ [35].
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2. Canonical HJ vs. DWHJ for the scalar field
in curved space-time

The Lagrangian density of a scalar field in curved spacetime with the
metric g, (g := det g,,) reads

L= 20" 0uon/ =5~ V(Y. @

The canonical HJ equation is derived by using a foliation of spacetime by
space-like hypersurfaces F labelled by the time function ¢.

In adapted coordinates, the metric g,,, decomposes in terms of the lapse
function NN, the shift vector N* and the spatial components hij

ds? = (N;N' — N?) dt* + 2N;da'dt + h;jda’da’ . (5)

By introducing the canonical momentum 7 and the canonical Hamilto-
nian density H(¢(x),n(x)) in the usual way (cf. e.g. [36]), the canonical
HJ equation for the eikonal functional S(¢(x),x,t) takes the explicit form
(h = det hij)

oS
N 68 68 1 .. . 58
+/dw ( +2h2]8iw3jwﬂ+V(¢)ﬂ+N28¢w>

2Vh dp(x) dp() ()
=0, (6)
where the solutions of field equations are embedded by the condition
oS
V=99"0up = ——— .
! ()

On the other hand, from (4) we obtain the polymomenta and the DW
Hamiltonian density

Ve =V = g+ Vg (7
and the DWHJ equation (2) for the eikonal densities S*(p,z")

05" — 5= GGt + V(G =0, ©
where p# = %ﬂ and the solutions of classical field equations are given by
the embedding condition

oS
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Our task is to understand the relationship between the canonical formu-
lation (6), which requires a space-time split, and the DW formulation (8)
where all space-time variables are treated equally. Here, we generalize the
consideration of [34] to curved spacetime. At first, we introduce the restric-
tion of the densities S#(¢,z") to a field configuration ¢(x) on a hypersur-
face F at a time ¢, S¥| (r) := S*(¢(x), x,t). The embedding condition (9)
in adapted coordinates yields

AL 1)
? lo(F) Y o)
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- N? = /=g (dop — N'O;p) . (11)
0 ly(F)

Following [34], we construct the eikonal functional from the DW eikonal
densities
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Then, using (8) and (10), for the time derivative of S, we obtain

oS :/dw&gSO(go(w),w,t) = /dw{ —diiSi
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where the notation for the total divergence of the eikonal density on ¢(F)
is introduced
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By noticing that the functional derivative of the functional (12) with respect
to ¢(x) reads

s _os°

op(x) O

and assuming that S° | o(F) vanishes at the boundary of ¢(F), so that the
integral of the total divergence in (13) does not contribute, we conclude that
the functional S constructed in (12) obeys the canonical HJ equation (6) as
a consequence of the DWHJ equation (8) for the eikonal densities S*.

; (15)
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3. The DWHJ equation and the canonical HJ equation
in general relativity

In 3 4+ 1 dimensions, the DWHJ equation for general relativity found by
De Donder [1] and Hofava |28, 29| reads

(16)
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It uses the metric density components g% = \/—g ¢®? as the field variables,
so that SH = SH(g*h, zv).

The polymomenta derived from the truncated Hilbert action without the
surface term are expressed in terms of the Christoffel symbols

Q3 =5 (o3, +00rs,) - 18, ()

The solutions of Einstein’s field equations are constructed from the eikonal
densities S* using the embedding condition

98¢ 1
Q= 55 = 5 (9570, +05%,) — I%, (18)
and the well-known expression of the Christoffel symbols in terms of the first
derivatives of the metric.
In order to understand the relation between the DWHJ equation for
general relativity (16) and the canonical HJ equation found by Peres [30]

1 1 0S 0S8
/dw (\/ —g°R+ Ve <2gz’jgkl - giinl) 5g<5gkz> =0, (19)
)

we have to perform a space-time decomposition in (16). In this paper, we
confine ourselves to the simpler case of adapted (Gaussian) coordinates with
goi = N; = 0 and goo = —1. Following [34], we construct the canonical HJ
functional S([g;j(x)], ) from the eikonal densities S*(g?, z#)

S(lgp(@).t) = [ do 8, = [ des® (¢*P(@)2t) . (20

F F

where S¥|;7) = SH(g* B(x),x,t) denotes the restriction of the eikonal densi-

ties S* (gBV, x“) to the spatial field configurations g*?(x) on a hypersurface
F at the time ¢. In the Gaussian coordinates, the embedding conditions (18)
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give rise to the following relations:
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Using (16) and (21a), (21b), we obtain for the time derivative of S
d 05!
8tS :/dl’{ _dxiSl

g8
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where the total divergence is understood as in (14). Then, by using (21b),
and the identity
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By noticing that
959
09ij
we finally conclude that, under the assumption that the surface terms do

not contribute, the right-hand side of (22) coincides with the Hamiltonian
constraint in the canonical HJ form (19)

1 1 08 68
dz (V=g R+ —— ( 20500 — gingi | ——>) . (2

Since the DWHJ theory reproduces solutions of the Einstein equations, the
embedding conditions (21) imply that the Hamiltonian constraint is vanish-
ing on the solutions, i.e. 9;S = 0, and hence the timelessness of the canon-
ical formalism of general relativity emerges from the DWHJ formulation as
a consequence of the space-time splitting.

_ 5 (25)
o) 090
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4. Conclusions

We derived the canonical functional derivative HJ equation from the par-
tial derivative DWHJ equation for the scalar field theory in curved space-
time and general relativity in metric variables. In both cases, the Ansatz
proposed in [34], which relates the canonical HJ functional with the DW
eikonal functions/densities, holds true. In general relativity, where we con-
fined ourselves to the case of the Gaussian coordinates, we derived the stan-
dard Hamiltonian constraint in the HJ form from the DWHJ equation. We
expect that a consideration in general coordinates will also reproduce the
momentum constraint. The obtained results should be helpful for the com-
parison of canonical quantum gravity [26, 27| and precanonical quantization
of general relativity [19-25], and for the study of the latter in the semiclas-
sical approximation, where it should reproduce the DWHJ equation. They
may also be helpful for understanding the origin of the problem of time in
quantum gravity. We also expect that the DW and the DWHJ formulation
of Einstein’s equations can be useful for their numerical integration using
the polysymplectic integrator which preserves the fundamental structure of
the DW Hamiltonian form of field equations (cf. [37]). Our result can be
viewed as a classical counterpart of the study of the relations between the
functional Schrédinger representation in quantum field theory (see e.g. [36])
and the precanonical quantization based on the DW Hamiltonian theory,
which has been undertaken in [12-18; 34, 38, 39] and whose extension to
quantum gravity is so far unknown.
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