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We analyze four-dimensional quantum gravity model defined by Causal
Dynamical Triangulations (CDT). Oune of the key features of CDT is that
the geometry of quantum space-time can be globally foliated into spatial
slices with fixed three-dimensional topology. We show that CDT with
toroidal spatial topology (7°) has rich phase structure, including the semi-
classical phase C' consistent with Einstein’s general relativity. Some of the
phase transitions are also found to be second (or higher) order which makes
a possibility of taking continuum limit viable. These findings are consistent
with earlier results obtained in CDT with spherical spatial topology (S%).
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1. Introduction

One of the most successful attempts of the lattice formulation of quantum
gravity (QG) is that of Causal Dynamical Triangulations (CDT) (for a recent
review, see [1]). CDT is based on the path integral formalism and makes
only a few assumptions on the geometry of quantum space-time, namely it
requires that the geometry can be globally foliated into three-dimensional
space-like hypersurfaces, each with the same fixed topology. CDT uses the
discretization of space-time geometry following the method proposed by
Regge [2]. In this approach, the (discretized) geometry is constructed by
gluing together two types of elementary simplicial building blocks, called
the (4,1) and the (3,2) simplex, to obtain piecewise-linear manifolds (also
called triangulations 7)!. In CDT, the path integral of QG is defined by a
sum over all possible triangulations 7" which obey the requested topological
conditions

* Presented at the 6*® Conference of the Polish Society on Relativity, Szczecin, Poland,
September 23-26, 2019.
! For more details, see [1].
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Zou = [ Dalgl S —  Zopr = 3 eS0T, (1)

where Si is the Regge discretization [2] of the continuum gravitational
Hilbert—Einstein action Syg for a triangulation 7

SR[ﬂ e (KJQ + GA) Ny + kg (N(471) + N(gyg)) + A N(4’1) . (2)

The Regge action in equation (2) is a linear combination of the total num-
ber of the (4,1)-simplices: N4 1), the (3,2)-simplices: N(39) and vertices:
Ny in the triangulation 7, and three dimensionless bare coupling constants
ko, A and k4. The coupling constants are related to Newton’s constant,
the cosmological constant and the asymmetry between lengths of space-like
and time-like links in the triangulation, respectively. The existence of the
global foliation means that each triangulation can be analytically continued
between the Lorentzian and the Euclidean geometry. In the FEuclidean for-
mulation, the memory of the time direction and foliation is preserved. Wick
rotation changes the Lorentzian action into the Euclidean action and the
path integral Zcpr becomes a partition function of (triangulated) random
geometries which can be studied numerically using Monte Carlo methods.
Earlier results were mainly obtained for the fixed spatial topology of the
3-sphere and the studied systems were also assumed to be periodic in the
(Euclidean) time. In such a case, CDT showed rich phase structure (see
Fig. 1) including the semiclassical phase C, where one observes dynamical
emergence of 4-dimensional background geometry consistent with general
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Fig.1. Phase structure of 4-dimensional CDT. Thin solid lines are phase transi-
tions measured for the toroidal spatial topology T° (shaded regions represent error
bars). Thick solid lines are phase transitions measured for the spherical spatial
topology S3.
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relativity [3], and quantum fluctuations of spatial volume are described by
the Hartle-Hawking minisuperspace action [4, 5]. Another important result
was the existence of phase transitions of higher order [6, 7] which makes a
possibility of taking continuum limit viable [8, 9].

2. CDT with toroidal spatial topology

Below, we present new results obtained for the fixed spatial topology
of the 3-torus (and the time periodic boundary conditions), which has been
studied recently. In [10, 11], it was shown that in such a case, one can observe
the analogue of phase C, albeit the quantum fluctuations occur around a
different semiclassical background geometry than in the spherical topology?.
In the toroidal case, the quantum fluctuations of spatial volume are again
well-described by the minisuperspace action, and one can also observe a
quantum correction in the effective potential, which could not be measured
in the spherical CDT.

By analyzing the behaviour of four order parameters in various points
on the toroidal CDT phase diagram, one can as well observe the analogues
of all other phases discovered in the spherical CDT [12]. One can also
measure precisely the position and order of the phase transitions. The phase
diagram in Fig. 1 shows that the toroidal CDT phase transitions are only
slightly shifted versus the spherical CDT case which most likely results from
different finite size effects in these topologies®. As an additional bonus, in
the toroidal case, one was able to perform precise numerical simulations in
the most interesting region of the parameter space where the phases meet,
which was not possible in the spherical CDT. The measurements showed
that instead of the conjectured “quadruple” point, where all four phases
were supposed to meet, one observes two separate “triple” points, where
three phases meet. In between the two “triple” points, one can also measure
the direct C—B phase transition, which was shown to be first order [13],
albeit with some untypical properties suggesting that the end points can be
higher order.

The recent studies of the toroidal CDT confirmed that the A-C tran-
sition is first order [14] and that the B—Cj transition is second (or higher)
order, exactly as it was observed in the spherical topology. For the C—C}
transition, which was shown to be second (or higher) order in the spherical
case, in the toroidal CDT, one observes strong hysteresis, suggesting that
the order of the transition might have changed. So far, due to the hystere-
sis, the numerical algorithms used do not allow us to make precise finite size

2 The average spatial volume profile in phase C changes from that of the (Euclidean)
de Sitter space (in the spherical CDT) to the flat profile (in the toroidal CDT).

3 The minimal possible triangulation of the 3-torus is much larger than the minimal
triangulation of the 3-sphere [10].
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scaling analysis of that transition, so one can neither prove nor disprove this
hypothesis. The order of measured phase transitions is summarized in the

table

below.

Phase transition

Topology: S x T3

Topology: St x S3

A-C
B-C
B-CYy
C-Cy

15t order
15t order

higher order
?

15t order
7

higher order
higher order

3. Summary and conclusions

We have summarized results of the phase structure and phase transitions
studies in CDT with the toroidal spatial topology (T%) and compared them
with the results earlier obtained in the spherical spatial topology (S%). Our
findings confirm that although the detailed features of quantum geometries
observed in different topologies may change, e.g. a different background ge-
ometry emerges in the semiclassical phase C in each of the topologies, the
key properties of CDT remain universal independently of the (fixed) spatial
topology choice.
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