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With the basis of CDT quantum gravity, we implemented a dynamical
particle in the form of a massline, which is minimally coupled to the geom-
etry via the action Sm = mL, where m is the bare mass and L is the length
of the line. During our simulations, we measured the radial distribution
of the volume and curvature around the line, which resulted in nontrivial
findings. Furthermore, we measured the length of the line in the function
of the mass and found agreement with the expected theoretical value.
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1. Introduction

Causal Dynamical Triangulations (CDT) is a framework which attempts
to quantize gravity via a nonperturbative formalism [1]. It defines a Feynman
path integral on a piecewise simplical manyfold built up from d-dimensional
simplices. CDT introduces a globally hyperbolic foliation to enforce causal
structure. The partition function of the theory is defined as

ZCDT =
∑
T

1

CT
e−SE[T ] , (1)

where SE[T ] is the Euclidean Einstein–Hilbert action which is defined on
the T triangulation, and CT is a sum factor of a configuration. The 4-di-
mensional model cannot be solved analytically so one has to use numerical
simulations such as Monte Carlo Metropolis algorithm to create and sum
over the ensemble of configurations to calculate the expectation values of
various observables. The Euclidean Einstein–Hilbert action which drives
the dynamics of simulations can be written in the Regge formalism as

SE
R = −(K0 + 6∆)N0 +K4N4 +∆N41 , (2)
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where K0,K4 and ∆ plays the role of the bare gravitational coupling, the
cosmological coupling and asymmetry parameters, respectively. After fixing
the volume of configurations [2], the parameter-space can be limited to a 2-di-
mensional subspace called the phasestructure (shown in Fig. 1). Analyzing
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Fig. 1. The phase structure of CDT with its 4 distinct phases.

this subspace, one can find the existence of four distinct phases which seems
to be a topology-independent feature of the theory [3]. Phase C is the region
where the effective action agree with the Hartle–Hawking Minisuperspace
model [4]. The results shown in the following sections were achieved for
coupling values: (K0, ∆, V ) = (4.0, 0.2, 160 k), where V is the number of
simplices and the spatial topology was that of a sphere and torus.

2. Massline

The notion of a massive particle in this theory could be imagined as a line
in the 4-dimensional configuration. The massline is a closed timelike loop
which is minimally coupled via the action Sm = mL, where m is the value
of the mass and L is the length of the loop. Since CDT is a coordinate free
model, there is no notion of location only the distances between simplices
can be measured. Looking at the radial distribution of the 3-dimensional
volume around the massline V m(d,m) and around a random point V r(d,m)
as a function of distance d (defined via the centers of tetrahedra) and mass
m shows difference shown in Fig. (2). The local environment of the massline
with a value mcrit shows nontrivial deviation from other values. The 3-di-
mensional curvature is located around links, thus the formula of curvature
will be

C(d,m) ≈
∑
d

1

o(ld)
, (3)

where o(ld) is the order of the link l of a tetrahedron at distance d, and m
dependence is due to different expected profiles for various m (Fig. (2)).
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Fig. 2. V m(d,m) and V r(d,m) (left) and Cm(d,m) and Cr(d,m) (right).

The behavior of Cm(d,m) can be extracted by plotting the value of cur-
vature in m. Figure (3) shows the values of Cm(d,m) at given distances and
masses. When m is close to a critical value mcrit, the value of Cm(d,m) < 1,
which means negative (attractive) curvature.

Fig. 3. (Color online) The values of C(d,m); the color denotes the distance from
the line.

The effect is stronger in the vicinity of the line and dies off around d > 10.
Furthermore, the same shape of distribution was observed independently of
the system size, topology or position in the phase diagram. The results com-
ing from C(d,m) and V (d,m) are in agreement. Another natural measure is
l(m) which should approach the minimal length for large m and raise to ∞
as the mass approaches a non-zero critical value (which is not equal to the
above described mcrit). In Fig. (4), the length of the line function of m can
be seen. For large m, the function approaches m0 = 4T , where T is the
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number of timeslices, which was T = 10 in our simulations. The solution
which was predicted theoretically is independent of the topology and the
total volume of the measured configuration.

Fig. 4. The length of the line function of m. The minimal length l0 = 40 is sub-
tracted from the measured value. l(m) behaves as the sum of exponentials with
the limit: 40 exp(−m).

3. Conclusions

In this article, the first results on implementing a point particle in the
CDT setup were presented. The radial volume distribution and the curva-
ture were found to be meaningful observables around the massline. These
values have a strong dependence on m and a critical value of mass was found
to be mcrit ≈ 1.5±0.5. The function l(m) was measured with high accuracy.
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