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This short note emphasises a potential tension between string models
of inflation based on systems of branes and antibranes and the spectrum
of strings in curved space, in particular the requirement that the leading
Regge trajectory extends to the Planck scale allowing for the conventional
string theory UV completion of gravity.
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1. Introduction

Inflation is the main paradigm for the formation of structure in the early
universe and it is important to understand potential embeddings in string
theory. In this respect, there are a wide variety of stringy inflationary sce-
narios with many different candidates for the inflaton field (moduli, axions,
brane modes . . . ) — a detailed review is in [1].

In constructing scenarios, two clear, possibly distinct, goals exist. The
first goal is to match observations and the second goal is to have parametric
control of the scenario. While parametrically controlled models may not
be observationally viable, they are important for the existence claim that
inflation can be realised in string theory. As with the related questions of
moduli stabilisation and the construction of de Sitter vacua, it is important
to know whether there are any principled and conceptual difficulties with
embedding inflation in string theory, or whether the problems are purely
practical ones associated with the complexity of compactification scenarios.
This is one aspect of the swampland program [2], for which [3] is a detailed
review.
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In this respect, one of the most popular stringy inflationary scenarios is
brane inflation [4]. There are several reasons for its popularity. One is that
it is rather generic, as branes are an unavoidable feature of perturbative
string theory. It also has a simple interpretation, with the slope of the
inflationary potential arising from the brane/antibrane interaction potential.
Brane/antibrane inflation also offers novel phenomenology compared to field
theory models of inflation, as the inflation field (the brane locus) simply
disappears after inflation as the brane and antibrane annihilate.

This classical picture of branes is one that makes most sense at weak
string coupling, when branes exist as solitonic non-perturbative objects.
Once gs ∼ 1, there ceases to be a clear distinction between perturbative
string modes and non-perturbative brane states. In general, a weak string
coupling gs � 1 is also normally assumed in moduli stabilisation scenarios,
as it is helpful in ensuring control of the computations, by allowing the ne-
glect of quantum loop corrections to the compactification data (or, at least,
ensuring that only the leading such corrections are relevant).

It is true that the asymptotic limit of gs → 0 is a bad one from the per-
spective of matching observations. As in string theory the gauge couplings
always in part inherit their strength from the string coupling, 〈gs〉, the finite
values of the Standard Model gauge couplings αSM ∼ 1

30 are unattainable
for the case that gs � 1

30 . However, such practical considerations are less
relevant for the question of whether controlled string models of inflation are
realisable in principle.

The question this note is concerned with is whether or not there are any
principled difficulties in models of brane inflation with gs � 1, and even
more specifically with the asymptotic limit gs ≪ 1.

2. Inflationary brane/antibrane potentials

The literature on brane inflation models is large. This note is concerned
with models in which a large part of the inflationary vacuum energy arises
from the brane tension. This is true of brane/antibrane inflation and also
of most variants of axion monodromy.

The bosonic part of the D-brane action is

S =
2π

lks

∫
dkx e−φ

√
g + 2πα′F , (1)

where ls = 1
ms

= 2π
√
α′ is the string length, φ is the string dilaton and F

the internal gauge field on the brane. For a brane that is space-filling but
wraps an internal p-cycle Σ of the compactification manifold, the vacuum



A Note on Brane Inflation 233

energy of the brane is then

Vbrane =
VolΣ
gs

(
2π

l4s

)
. (2)

Here, VolΣ is the volume of the internal cycle Σ measured in units of lps (for
a D3 brane that is point-like in the internal space p = 0 and VolΣ = 0).
The vacuum energy associated to an antibrane is identical, as the two are
instead distinguished by the sign of the Ramond–Ramond charge associated
to the Cp form under which the brane is charged.

This implies that in the doubly controlled limit of a compactification that
is well-described by classical geometry (VolΣ > 1) and has an asymptotically
weak string coupling (gs ≪ 1), the energy associated to a brane–antibrane
pair is VDD̄ � m4

s . Note that this is also true for warped compactifications
involving an anti-D3 brane at the bottom of a throat, except that here ms

should now refer to the local string scale (either at the presence of the brane
or the antibrane).

For such models, during the inflationary epoch the potential always sat-
isfies Vinf � m4

s . For this not to occur requires a substantial cancellation
between the brane tension and other negative tension sources (such as ori-
entifold planes) present in the compactification. While this is possible for
models which are fundamentally supersymmetric, this is not the case for
models involving explicit antibranes.

In any case, this note is restricted to the (large) class of models for which
the brane/antibrane tension contributes significantly to the overall vacuum
energy, such that Vinf � m4

s .

3. The Higuchi bound

The relevance of this is that two recent papers [5, 6] have pointed out
a potential problem with an inflationary scale satisfying Vinf � m4

s . This
arises from studying the string spectrum on de Sitter space, and in particular
the spectrum for long rotating strings. As described in most detail in [6],
the linear Regge trajectory

E2 ∝ S ,
where S is the spin and E2 the squared mass, is modified for large spins
as the string is longer and so feels the effect of the curvature of de Sitter
space. This curvature results in there being both a maximum mass and a
maximum spin along the Regge trajectory, which then curves back on itself
to lower values of E2 and S (as illustrated in figure 3 of [6]), with a maximal
mass and spin of

Emax = 0.67
R

α′
, (3)
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Smax = 0.31
R2

α′
, (4)

where R is the de Sitter radius.
The implication of this is that for de Sitter radii R &MPα

′ (equivalently,
a potential V . 1

α′2 ∼ m4
s ), the maximal mass on the Regge trajectory is

above the Planck scale. In this case, the conventional string theory ultravi-
olet completion of gravity can occur through excited string modes.

The converse of this is that for inflationary potentials with V & 1
α′2 ∼ m

4
s

the turnover in the Regge trajectory occurs before the Planck scale. In
this case, the leading Regge trajectory has no states at or near the Planck
scale. In the extreme limit of a parametric separation V � 1

α′2 ∼ m4
s , the

corresponding maximal energy along the leading Regge trajectory becomes
Emax � MP and the leading Regge trajectory contains no state near the
Planck scale.

However, this parametric separation is exactly what occurs for brane
inflation in the asymptotically controlled regime of VolΣ > 1 and gs � 1;
as V � m4

s , the leading Regge trajectory turns over far below the Planck
scale, causing a potential problem for the ordinary string theory ultraviolet
completion of gravity. The region of parametric control, therefore, appears
to lead to a new possible inconsistency.

Note that the use of warped throats does not affect this conclusion as the
Regge trajectory comes from the spectrum of excitations in the non-compact
spatial directions, which are unaffected by the warping.

4. Caveats

For several reasons, this problem should be understood as a potential,
rather than definite, problem. First, actual string compactifications involve
values of gs that are finite rather than arbitrary small. As V ∝ m4

s
gs

implies
R ∝ √gs, the resulting numerical factor may be, for practical considerations,
not that distinct from unity or any of the other factors of 2π entering the
calculation. So even if there is a problem with UV completion of gravity for
arbitrarily small values of gs, for finite values of gs the problem may not be
significant.

Secondly, it is not clear that consistency requires the string theoretic UV
completion of gravity to occur via the first (or leading) Regge trajectories.
Although this is what happens in flat space, it is possible that for string the-
ory on a de Sitter background the physics of the UV completion is different,
without leading to any kind of inconsistency. A detailed resolution of this
point would require the study of string scattering amplitudes in a curved
background.
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5. Conclusions

The purpose of this short note is to emphasise, following the papers
[5, 6], a potential problem for brane inflation within the apparently para-
metrically controlled regime of weak couplings and large volumes. In the
limit of gs � 1 and cycle sizes Vol(Σ) � 1, the leading stringy Regge tra-
jectory has a maximal energy Emax � MP, invalidating the conventional
string theoretic argument for an ultraviolet completion of gravity. For the
reasons just outlined, this is a potential problem rather than a definite one;
nonetheless, given the importance of the question of whether or not infla-
tion and de Sitter vacua are realisable, it is important to scrutinise all such
possible obstacles.
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