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SOLAR SYSTEM CONSTRAINTS ON ANALYTIC
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The post-Newtonian equations-of-motion corrections to finite volume
massive bodies and light rays for an arbitrary analytical Palatini f(R)
theory are derived. It is shown that, apart from a mass-energy redefinition
that is explicitly found here, which cannot be constrained by solar system
tests, the predictions are the same as in general relativity.
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1. Introduction

A very practical way to confront an alternative theory of gravity with
solar system tests is through the Will and Nordtvedt parametrized post-
Newtonian (PPN) formalism [1]. This framework considers a generic post-
Newtonian (PN) metric as an expansion in terms of gravitational potentials
and relates each coefficient of this expansion (the so-called PPN parameters)
with specific phenomena by means of the equations of motion. Once derived
the PN metric of a theory, its PPN parameters and solar system constraints
are promptly obtained (see, for instance, [2]). It turns out that the number of
gravitational potentials considered by the formalism is limited. This implies
that, if a given theory does contain distinct potentials in its PN metric, one
should deduce the PN equations of motion in order to obtain the influence of
new potentials in the trajectories of planets and light rays. That is the case
of Palatini f(R) gravity, the alternative theory considered in this work [3].

The PN approximation of Palatini gravity has been considered previously
in [4]. However, that work confronts Palatini gravity with solar system tests
through the analysis of the PN metric, not considering the equations of
motion. This issue we investigate here in detail considering an arbitrary
analytic f(R) Palatini gravity.
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2. Palatini f(R) gravity review

The Palatini f(R) considers the spacetime metric gµν and an affine con-
nection Γ λµν as independent objects of the manifold. Matter fields are min-
imally coupled with gravity and their Lagrangian does not depend on the
connection. The action variations with respect to g and Γ lead, respectively,
to the following field equations:

f ′(R)Rµν −
1

2
f(R)gµν = κTµν and ∇λ

(√
−gf ′(R)gµν

)
= 0 , (1)

where κ is some coupling constant, the prime indicates a derivative with
respect to R, and ∇ represents a covariant derivative constructed with the
affine connection. It is important to note that, similarly to GR, diffeo-
morphism invariance implies that ∇µCTµν = 0, where ∇µC is the covariant
derivative associated with the Christoffel symbol of metric g.

3. Palatini post-Newtonian metric

The PN framework is an approximation method for gravitational theories
which considers a weak-field and slow-motion regime, a suitable approach
to describe Solar System dynamics. To implement this framework to the
Palatini f(R), we follow Ref. [5]. Once the metric field is described as a small
perturbation of a flat spacetime, we consider an analytical f(R) and expand
it around R = 0, f(R) =

∑∞
n=0 anR

n, where an are constants. In order to
proceed with PPN formalism, we impose that space should be asymptotic
flat, a0 = 0. Since κ is arbitrary, we can also set a1 = 1. Solving the field
equations order by order, we obtain the PN metric in Palatini gravity

g00 ≈ −1 + 2(U + ψ) + ∂ttχ− 2U2 +
(
3ã3 − 2ã22

)
ρ∗2

+ã2
(
2ρ∗ − 4ΦP − 10Uρ∗ + v2ρ∗ − 2Πρ∗ + 6p

)
, (2)

g0i ≈ −4V i , gij ≈ δij + 2 (U + ã2ρ
∗) δij , (3)

where ã2 = κa2, ã3 = κ2a3 and Latin indices run from 1 to 3. When
ã2 = ã3 = 0, the GR solution is recovered. The quantities ρ∗, Π and p are
the usual perfect fluid conserved mass density, internal energy density and
pressure, respectively. The U , ψ, χ and V i are standard PPN potentials,
and ΦP is a new potential particular to Palatini gravity, namely

ΦP =

∫
ρ∗(x′, t)2

|x− x′|
d3x′ . (4)

We first note that our result is not in conflict with the previous analysis on
the PN limit of Palatini gravity using scalar-tensor equivalence [4]. At the
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Newtonian order, there is a Palatini correction term given by ã2ρ
∗. This

term is in general relevant for the internal stability of a given body, but it
does not change the body center-of-mass trajectory, as will be clear later.

For the light propagation, PN corrections in the photon trajectories are
given by the vacuum second order metric, which is equivalent to GR. There-
fore, the PPN parameter γ within Palatini gravity is precisely 1, just like GR.
To determine the equations of motion of massive, finite-volume bodies, fur-
ther details are necessary. The first step is to examine the PN hydrodynamics
in order to find the conserved quantities.

4. Conserved quantities

By manipulating the conservation of energy-momentum tensor it is pos-
sible to obtain conserved integrals. The time component leads to a total
energy conservation

dE

dt
= 0 , with E ≡

∫ (
1

2
ρ∗v2 + ρ∗Π − 1

2
ρ∗U − ã2

2
ρ∗2
)
d3x . (5)

The total mass-energy of the fluid is then defined as M = m + E and it
satisfies dM/dt = 0, where m is the material mass, m =

∫
ρ∗d3x, and it

is constant in time too. The vector equation of the conservation of energy-
momentum tensor can also be integrated to define the total conserved mo-
mentum, dP i/dt = 0, with

P j =

∫
ρ∗vj

(
1 +

v2

2
− U

2
+Π +

3p

ρ∗
− ã2ρ∗

)
d3x− 1

2

∫
ρ∗W jd3x . (6)

The previous results show that Palatini f(R) gravity does not violate
total conservation of energy and momentum in the PN regime, although
it redefines the conserved quantities. This is an expected outcome since
any Palatini gravity model is a Lagrangian-based metric theory with matter
action being independent from the affine connection and, as shown in [6],
they should not violate PN conservation laws. In the context of the PPN
formalism, the results obtained here directly show that the PPN parameters
ζ1, ζ2, ζ3, ζ4 and α3 are all zero in the Palatini f(R) gravity.

5. Equation of motion for massive bodies

In this section, we split the fluid description of the source into N sepa-
rated bodies in order to obtain the PN equations of motion for the bodies
center-of-mass positions. Each body indexed by A has a material mass and
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center-of-mass acceleration given by

mA =

∫
A

ρ∗d3x , aA(t) =
1

mA

∫
A

ρ∗
dv

dt
d3x . (7)

The volume where the integration above is calculated is bounded in the inter-
body vacuum region. The center-of-mass acceleration of each body will be
a sum of three parts: the Newtonian acceleration aNewt

A , a PN correction
aPN
A and the structural contribution astr

A . The integrand of Eq. (7) is found
from the PN Euler equation and all mathematical techniques are detailed in
Ref. [5]. The final results read

aNewt
A = −

∑
B 6=A

mB

r2AB
nAB , astr

A = −
∑
B 6=A

EB
r2AB

nAB , (8)

aPN
A

= −
∑
B 6=A

mB

r2AB

{[
v2A− 4(vA ·vB) + 2v2B−

3

2
(nAB ·vB)2−

(5mA−4mB)

rAB

]
nAB

− [nAB · (4vA − 3vB)] (vA − vB) +
∑

C 6=A,B

7mCrAB
2r2BC

nBC

−
∑

C 6=A,B
mC

[
4

rAC
+

1

rBC
− rAB

2r2BC
(nAB · nBC)

]
nAB

}
. (9)

In the above expressions, we use the definitions rAB = rA − rB, rAB =
|rAB| and nAB = rAB/rAB. These equations have no explicit dependence
on either a2 or a3 and they are identical, in form, to the corresponding GR
expressions. There is a single implicit difference inside the constant EB,
which is the energy associated with the planet indexed with B. However,
the PPN parameters are not sensitive to this energy redefinition. Moreover,
the above result implies that the remaining PPN parameters are once again
equal to their GR values, β = 1 and α1 = α2 = ξ = 0. Hence, in spite of
the appearance of non-standard PPN potentials in the metric expansion, we
conclude that the values of all the PPN parameters are the same as of GR.

6. Conclusion

In this work, it was presented a post-Newtonian (PN) analysis of a class
of analytic Palatini f(R) gravity without making use of the equivalence with
scalar-tensor theories and, more importantly, using the equations that de-
scribe light and planets trajectories to link theory and experiments. This
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is because the PN metric in Palatini theories does not fit the PPN formal-
ism. The results found is that the equations of motion are precisely the
same as in GR. Using the PPN language, we show that GR and Palatini
gravity share the same PPN parameters. The only difference is in the con-
served mass-energy function, where Palatini theories contain a correction
term. Nonetheless, solar system tests are insensitive to this kind of dis-
tinction, leading to the conclusion that the Palatini f(R) gravity cannot
be constrained by the current observations made at solar system. Further
details on the present work can be found in Ref. [7].

The author thanks FAPES and CNPq (Brazil) for their support trough
the Profix program.
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