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We prescribe a method to study the effects of self-gravity of accretion
disk around a black hole associated with long Gamma Ray Bursts (GRBs)
in an evolving background Kerr metric. This is an extension to our previ-
ous work where we presented possible constraints for the final masses and
spins of these astrophysical black holes. Incorporating the self-force of the
accreting cloud around the black hole is a very important aspect due to the
transient nature of the event, in which a huge amount of mass is accreted
and changes the fundamental black hole parameters i.e. its mass and spin,
during the process. Understanding of the GRBs engine is important be-
cause they are possible sources of high-energy particles and gravitational
waves as most of the energy released from the dynamical evolution is in the
form of gravitational radiation. Here, we describe the analytical framework
we developed to employ in our numerical model. The numerical studies are
planned for the future work.
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1. Introduction

Gamma Ray Bursts (GRBs) are highly energetic explosions in the uni-
verse releasing a tremendous amount of energy. Based on observation, these
energetic events can be classified into two different types: short-duration
bursts with a duration of less than 2 seconds and long-duration bursts last-
ing more than 2 seconds [1]. The most conceded theory to describe the
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long-duration gamma ray bursts is the collapsar model where a very mas-
sive, rapidly rotating star collapses down to its iron core and forms a black
hole [2–4]. Not all the stars produce long GRBs as they collapse and the
distinguishing reason is the rotation of the star because a disk may not form
in the case of insufficient angular momentum [5, 6]. The in-falling mat-
ter from the collapsed star, falling onto this black hole forms an accretion
disk around it which can launch a pair of relativistic jets (beams of ionized
matter) along the rotational axis of the progenitor star. These jets further
scrape off through the stellar surface and produce emission in gamma rays.

In the case of long GRBs, the process of collapse inevitably involves
feeding the new black hole with mass and angular momentum. Thus, the
computation of a GRB engine in a dynamically evolving space-time met-
ric is very important specifically due to the transient nature of the event, in
which a huge amount of mass is accreted and changes the fundamental black
hole parameters i.e. its mass and spin, during the process. The inclusion
of the gravitational force of accreting disk in the study of GRBs is crucial
because this creates local instabilities if the mass density of the accreting
cloud becomes comparable to M/R3, where M and R are the mass of the
central object and the disk radius, respectively. Self-gravity in accretion the-
ory limits the angular momentum of the disk as well as affects the evolution
of black hole mass.

2. Analytical model

To incorporate the effects of self-gravity of the disk, we chose the Teukol-
sky equation. This equation describes gravitational, electro-magnetic, scalar
and neutrino field perturbations of a rotating Kerr black hole [7]. The global
vacuum solution of the Teukolsky equation is given by the CCK method
[8–11] which reconstructs the metric perturbation and shows that only per-
turbations of the mass and angular momentum (δM and δJ) are to be
concluded within the Kerr metric. Further, van de Meent [12] shows that
the perturbation due to a particle for any bound orbit around a Kerr black
hole described by the CCK metric only affects the Kerr parameters describ-
ing the mass and angular momentum of the black hole in the Kerr metric
‘outside’ the particle’s orbit and vanishes ‘inside’ the orbit.

The most important thing to specify here is that we are dealing with flu-
ids but not particles in our simulation. That is the reason for incorporating
the perturbation in our models, calculated as volume integrals of the cor-
responding components of stress-energy tensor containing the mass-energy
and angular momentum of the gas. We consider orbits around the black
hole with radius equal to each grid point of our simulation. The pertur-
bative terms here are the only function of radius and time: δM(t, r) and
δJ(t, r). The update of mass and spin of the black hole at any given time t
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and point r due to perturbation is calculated considering the volume inside
the sphere of radius r. So the total mass of the black hole at a time is the
sum of black hole initial mass, accreted amount of mass through the horizon,
and perturbed mass inside the volume at that specified point r at that time

M(t, r) = M0 + ∆M(t) + δM(t, r) , (1)

whereM0 is the initial mass of the black hole. ∆M(t) is the amount of mass-
energy accreted through the horizon (r = rhorizon) i.e. the inner boundary
so far

∆M(t) =

t∫
0

2π∫
0

π∫
0

√
−g T rt dθ dφ dt

′
. (2)

δM(t, r) is the actual amount of mass-energy of the gas inside the sphere
from the horizon up to radius r of the particle, and the volume integral gives

δM(t, r) =

r∫
rhorizon

2π∫
0

π∫
0

√
−g T tt dθ dφ dr

′
. (3)

Similarly, the angular momentum can be calculated as

J(t, r) = J0 + ∆J(t) + δJ(t, r) , (4)

where J0 is the initial angular momentum of the black hole.
∆J(t) is the amount of angular momentum accreted through the horizon

so far

∆J(t) =

t∫
0

2π∫
0

π∫
0

√
−g T rφ dθ dφ dt

′
, (5)

where δJ(t, r) is the actual amount of angular momentum of the gas inside
the sphere from the horizon up to radius r of the particle, and the volume
integral gives

δJ(t, r) =

r∫
rhorizon

2π∫
0

π∫
0

√
−g T tφ dθ dφ dr

′
. (6)

Our simulation considers a non-magnetized, quasi-spherical flow. We
plan to follow its evolution numerically. We will make an array of δM and
δJ which are a function of radius and time. At each time, these arrays
will consist of values equal to the number of our grid points in r direction,
calculated for the volume inside each radius or grid point. Thus, each point
will have different amounts of perturbed mass.
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Calculation of the perturbative terms, δM and δJ , will be further used
in the calculation of the metric coefficients to update mass M and spin a of
the black hole, where a(t, r) = J(t,r)

M(t,r) . During the simulations, the units for
mass, length and time are given by the initial mass of the black hole M0.

3. Numerical model

To construct a physical model of the accretion disk, we need to solve the
GRMHD (General Relativistic Magneto HydroDynamics) equations further
supplemented by the equation of state (EoS) of the matter. In the scenario
of GRBs, the EoS is complex. Under the conditions of extremely high densi-
ties and temperatures, the nuclear reactions have to be taken into account.
All these physical complexities: magnetic fields, general relativity, nuclear
reactions pose a challenge to any kind of numerical scheme. There are few
studies dealing with the micro-physics of gamma ray bursts [13, 14].

In our current approach, we will neglect both the micro-physics and
neutrino transport in the simulation, and we will be using the adiabatic
equation of state. This assumption will help the simulation to go faster
and efficiently. It is beyond scope of our code for now to deal with the
detailed micro-physics of the flow in addition to the dynamical evolution of
the perturbative metric update.

We are also considering a non-magnetized flow. Ignoring the aspect of
the magnetic field in the case of GRBs leads to a very simplified case but the
inclusion of magnetized flow in such an updating Kerr metric is numerically
very challenging.

We will implement this CCK method described above in our version of
GRMHD numerical code HARM (High Accuracy Relativistic Magnetohy-
drodynamic) [15] (our version [16]). It is a conservative, shock-capturing
scheme, for evolving the equations of GRMHD. The code solves numerically
the continuity equation, the four-momentum-energy conservation equation,
and induction equation in GR framework. The form of integrated equation
in the code is

δUt(P ) = −δiF i(P ) + S(P ) , (7)

where U is a vector of conserved variables, such as particle number density,
energy and momentum, F i are the fluxes in finite control volume, and S is
a vector of source terms. The vector P is composed of primitive variables,
such as rest-mass density, internal energy density, velocity components, and
magnetic field components, which are interpolated to model the flow within
zones. HARM solves GRMHD equations in the modified version of the Kerr–
Schild coordinate system (KS) rather than the Boyer–Lindquist coordinates,
thus matter can accrete smoothly through the horizon and evolution of the
flow can be followed properly without reaching any coordinate singularity.
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4. Summary

Our previous study [17] speculates on the possible constraints for the
final masses and spins of these astrophysical black holes. The study shows
how much the evolution of flow is sensitive to the changes in the space-time
metric (see Fig. 1). It is a strong point in favor of the inclusion of self-gravity
effects of the disk on the metric in order to investigate such a dynamical
evolution. We expect to see more mass and spin growth of the black hole
after incorporating the perturbation effects of the accreting disk into the
updating metric. The importance of having different δM and δJ at each
grid point in r direction at each time affects the metric coefficients which
are sensitive to mass and spin update. We plan to follow the dynamical
evolution of such a system and study the mass growth, spin evolution and
disk structure in this scenario. We are also going to investigate the variation
in mass accretion rate and the following power density spectra from the
corresponding light curve.

Fig. 1. (Color online) Mass of the accreting cloud, contained within 1000 gravita-
tional radii, as a function of time. Three solid lines represent the rotation with
critical angular momentum at 6 rg (middle/green), for 0.4 lcritical (bottom/blue),
and for 1.4 lcritical (top/red). Figure adopted from [17].

In our model, we consider that the black hole already formed in the
center and the surrounding matter is feeding the black hole via accretion.
We are not going to study the formation of this black hole by the collapse of
the massive star by solving the Einstein field equations with the total matter
field i.e. the stress-energy tensor including fluid and the radiation part as
well. There is no such a detailed model present to date as per our knowledge
following the evolution from the very collapse of the star to the growth of the
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black hole in a complete general relativistic framework with detailed micro-
physics of the flow. It is very complicated to investigate all the aspects
associated with the phenomenon in a single model (see this review about
GRB progenitors [18]).

We are going to implement this above-described analytical framework in
our numerical study to get a more clear and realistic analysis of mass growth,
spin evolution and disk structure in the collapsar scenario. Our study would
join two important aspects of the collapsar model for GRBs studied so far
separately and provide a more unified, pragmatic and detailed model for the
very first time.
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