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Cosmography represents a model-independent approach potentially
useful to discriminate among concurring cosmological scenarios. After re-
viewing the main features and shortcomings of standard cosmography, we
highlight how to overcome the convergence issue jeopardizing current low
redshift-cosmographic distances. To do so, we give particular attention to
the use of cosmographic rational approximations, among them the Padé
and Chebyshev polynomials. We thus focus on dark energy models and
concurring extended and modified gravity models, in view of present cos-
mographic findings. We stress that current (and above all) future cosmo-
graphic constraints will be able to disentangle dark energy from alternative
gravity, showing which model can be effectively reliable to describe the
today observed accelerating universe.
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1. Introduction

Ever since the discovery of accelerated expansion [1], the description
of the universe has been fundamentally modified from its original version.
Observations immediately indicated that the universe is driven by a cosmo-
logical constant contribution that provides a negative pressure which acts to
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speed up the universe today. The most accepted paradigm which takes the
cosmological constant into account is named ΛCDM model and consists in a
matter term, composed by cold dark matter and baryons, with a cosmologi-
cal constant contribution and a spatially flat geometry. Although appealing,
the model suffers from several shortcomings, essentially related to the cos-
mological constant problem that can be split into a classical and quantum
caveats, intimately related to the difficulties of matching the Standard Model
of particle physics with cosmological observations. To overcome any issues,
a simple possibility is to extend the cosmological constant hypothesis in fa-
vor of an evolving dark energy term [2]. Several other possibilities can be
considered, e.g. the extended and/or modified theories of gravity which are
capable of encompassing the ΛCDM issues, by means of first principles. In
fact, the role played by vacuum energy is revised by means of corrections
to the Einstein–Hilbert action [3]. This approach has reached great inter-
est since it is possible to describe even the dark matter contribution within
a single scheme based on the concept of geometrical fluids. Recently, the
extended theories of gravity have taken novel consensus since Planck obser-
vations seem to indicate that inflationary phases can be driven by a simple
R+R2 potential, the Starobinsky model [4], in agreement with the simplest
extension of Einstein’s gravity known as f(R) models [5]. Null diagnostics
and model-independent techniques become essential to discriminate among
models. Unfortunately, the lack of cosmic data and the difficulties in fitting
high-redshift data plague severely the use of model-independent treatments.
In other words, it is not yet possible to disentangle extended theories of grav-
ity from dark energy models. However, the need of further investigations
on model-independent strategies is essential to refine the current knowledge
of universe dynamics. In this respect, cosmography represents a simple ap-
proach to model-independently handle the cosmological observables and to
match them with data [6]. The idea is taking into account the cosmological
principle and expanding the scale factor in Taylor series around our time t0.
Afterwards, all the other quantities of interest, above all cosmic distances
and ladders, can be re-expressed in terms of such an expansion. The cor-
responding new approximated versions of these observables are functions of
the derivatives of a(t) and can be directly fitted with cosmic data.

In this work, we critically revise the state-of-the-art of cosmography,
giving particular emphasis to the convergence problem and to the need of
extending the standard kinematic approach through rational approxima-
tions such as Padé and Chebyshev polynomials. The paper is structured as
follows. In Sec. 2, we analyze the role of cosmography and rational approxi-
mations. Afterwards, in Sec. 3, we compare our findings with extended and
modified theories of gravity. Finally in Sec. 4, we discuss our conclusions
and perspectives.
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2. Cosmokinematics

Among all possible model-independent approaches, cosmography is likely
the simplest one. It takes the observational assumption of the cosmological
principle and it is based on the Taylor expansions of observables which can be
directly compared with data. Thus, cosmography is, in principle, a powerful
tool to break the degeneracy among cosmological models. The strategy is
to expand a(t) in Taylor series around the present time. The approach
describes the universe kinematics considering only a(t) derivatives. The a(t)
expansion is known as the cosmographic series, which provides, together
with the Hubble definition H(t) ≡ 1

a
da
dt , the following quantities:

q(t) ≡ − 1

aH2

d2a

dt2
, j(t) ≡ 1

aH3

d3a

dt3
, s(t) ≡ 1

aH4

d4a

dt4
(1)

that are the deceleration, jerk and snap parameters. To discriminate among
models, one needs that, at least up to s0, the terms are univocally bounded
at the 3σ confidence level. Unfortunately, we are still far from this due to the
lack of cosmic data. This weakens dramatically the power of cosmography
in disentangling effective dark energy models from any other extensions of
Einstein’s gravity.

The most important quantity one can expand is the luminosity distance

dL(z) =
1

H0
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1

2
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from which it is possible to obtain the Hubble expansion rate as H(z) =[
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1+z
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(3)
The main limitation of Eq. (2) is the inability of the currently available
cosmological data to put tight constraints on the cosmographic parameters.
Moreover, the kinematic expansion of the universe at early stages is not
accounted due to the lack of a high-redshift formulation of cosmography.
Every expansion is, in fact, plagued by two main issues: (1) arbitrary order
of truncation which produces systematics within the numerical outcomes
produced by experimental analyses; (2) limited predictability due to the
fact that data exceed the limit of z = 0, i.e. the value around which one
expands to obtain the cosmographic series.
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The convergence of cosmographic series is therefore jeopardized by con-
struction issues that can lead to poorly bound the set of coefficients of inter-
est. To overcome this issue, one can consider rational approximations, such
as Padé and Chebyshev polynomials. The method of Padé approximations is
built up from the standard Taylor series of a generic function f(z), through
an (n,m) polynomial of the form of [7]

Pn,m(z) =

∑n
i=0 aiz

i

1 +
∑m

j=1 bjz
j

(4)

whose Taylor expansion agrees with
∑

i cif(z) to the highest possible order,
i.e. Pn,m(0) = f(0), P ′n,m(0) = f ′(0), P (n+m)

n,m (0) = f (n+m)(0).
The Padé method still leaves a degree of subjectivity in the choice of the

highest orders of expansion. Moreover, it works much better if one might
approximate non-smooth functions where other numerical methods fail, i.e.
in the cases of flexes or discontinuities in domains. So, conceptually, using
Padé series to approximate well-defined cosmic distances may be seen as a
non-suitable treatment in many cases.

Chebyshev polynomials may represent, on the contrary, alternatives to
reduce systematics on fitted coefficients. The Chebyshev polynomials Tn(z)
are defined as

Tn(z) = cos(nθ) , (5)

where θ = arccos(z) and n ∈ N0. They are orthogonal polynomials with
respect to the function w(z) = (1− z2)−1/2 for |z| ≤ 1 such that∫ 1
−1 Tn(z)Tm(z)w(z) = π if n = m = 0 and π

2 δnm otherwise. To generate
them, one can consider Tn+1(z) = 2zTn(z) − Tn−1(z), having T0(z) = 1,
T1(z) = z, T2(z) = 2z2 − 1, T3(z) = 4z3 − 3z, . . . To account for the conver-
gence issue, we can consider even rational versions of them [8]

Rn,m(z) =

∑n
i=0 aiTi(z)

1 +
∑m

j=1 bjTj(z)
. (6)

This leads to dL(z) = 1
H0

∑4
n=0 cnTn(z), where the terms cn are c0 = 1

64 [18+

5j0(1 + 2q0) − 3q0(6 + 5q0(1 + q0)) + s0], c1 = 1
8(7 − j0 + q0 + 3q2

0), c2 =
1
48 [14 + 5j0(1 + 2q0)− q0(14 + 15q0(1 + q0)) + s0] and so on.

3. Model-independent reconstruction of extended
and modified theories of gravity

The above cosmographic analysis can be adopted to reconstruct dark en-
ergy models deriving the functional forms of Lagrangians from observational
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data. This method can be considered as a sort of back-scattering approach
to the cosmological problem. A standard procedure in the f(R) studies con-
sists of assuming the gravity action and then finding out the dynamics by
solving the modified Friedmann equations. The standard approach relies on
postulating the form of f(R) a priori, which determines the cosmological
model. In what follows, instead, we present a model-independent method to
reconstruct the functional form of the action [9]. In particular, the method
of Taylor-expanding f(R) for R approaching its late-time values is limited by
the short range of redshift characteristic of observational data. Besides, the
truncation of the Taylor polynomial reproducing the f(R) function unavoid-
ably introduces errors in the analysis. In this respect, the Padé polynomials
may offer a possible solution to the convergence problem.

To apply our strategy, we first convert the time derivatives and the
derivatives with respect to R into derivatives with respect to z according
to the prescription

dF
dt

= −(1 + z)HFz , (7)

∂F
∂R

=
1

6

[
(1 + z)H2

z +H (−3Hz + (1 + z)Hzz)
]−1Fz , (8)

where F(z) is an arbitrary function and we denote derivatives with respect
to the redshift by the subscripts z. Then, after determining the values
of the cosmographic parameters, one can combine the modified Friedmann
equations, which provides us with the following second-order differential
equation for f(z) (see [6] for the details):

H2fz =
[
−(1 + z)H2

z +H (3Hz − (1 + z)Hzz)
]

×
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− 6H2

0 (1 + z)3Ωm0 − f −
Hfz (2H − (1 + z)Hz)

(1 + z)H2
z +H (−3Hz + (1 + z)H2

zz)

−
fzz
(
(1 + z)H2

z +H(−3Hz + (1 + z)Hzz)
)

[(1 + z)H2
z +H (−3Hz + (1 + z)Hzz)]

2 (1 + z)H2

−
(1 + z)H2

(
fz
(
2H2

z − 3(1 + z)HzHzz +H(2Hzz − (1 + z)Hzzz)
))

[(1 + z)H2
z +H (−3Hz + (1 + z)Hzz)]

2

]
. (9)

The initial conditions needed to solve the above equation are

f0 = R0 + 6H2
0 (Ωm0 − 1) , (10)

fz|z=0 = Rz|z=0 . (11)

The analytical match over f(z) can be approximated through three-param-
eter test-functions. Examples are:
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Exponential : f1(z) = Az + Bz3eCz , (12)
f2(z) = A+ Bz2 sinh(1 + Cz) , (13)
f3(z) = Az + Bz3 cosh(Cz) , (14)
f4(z) = Az2 + Bz4 tanh(Cz) , (15)

Trigonometric : f5(z) = Az3 + Bz5 sin(1 + Cz) , (16)
f6(z) = Az3 + Bz4 cos(1 + Cz) , (17)
f7(z) = Az + Bz2 tan(Cz) , (18)

Logarithmic : f8(z) = Az + Bz3 ln(1 + Cz) , (19)

where the set of coefficients is (A, B, C). Finally, to determine f(R), we
need to invert the function R(z) through a procedure that can be only done
numerically due to the difficulties in inverting H(z). Often it is requested,
during the inversion, to relax the assumption f ′(R0) = 1. This leads to a
Geff slightly different from the gravitational constant G, within experimental
limits. In the light of this, one gets

f0 = f ′(R0)
(
6H2

0 +R0

)
− 6H2

0Ωm0 , (20)
fz|z=0 = f ′(R0) Rz|z=0 . (21)

In both cases, i.e. when Geff is exactly the Newtonian constant or not, it
is important to stress that the asymptotic value of f ′(R) depends on the
accuracy of the cosmographic series at z � 1.

The extended theories of gravity can be therefore put in relation with
cosmography by means of the aforementioned formalism. The same can
happen for modified gravity models. Among all, let us consider how to
reconstruct f(T ) functions of teleparallel gravity in a model-independent
way, through cosmography. Knowing the set (H0, q0, j0, s0), we can again
consider f(T (z)) = f(z) and we can solve this formal equation numerically
by combining the modified Friedmann equations with cosmic data. In doing
so, we convert the derivatives with respect to time and the derivatives with
respect to the torsion scalar into derivatives with respect to the redshift,
getting a differential equation for f(z)(

df

dz

)−1 [
H(1 + z)

d2f

dz2
+ 3f

dH

dz

]
=

1

H

(
dH

dz

)−1 [
3

dH

dz
+ (1 + z)

d2H

dz2

]
.

(22)
The form of H(z) is the one imposed by cosmography, Eq. (3), driving
our solutions by imposing the equivalence between the effective gravitation
constant and the Newton constant

df

dz

∣∣∣∣
z=0

= 1 , (23)
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and, moreover, to have the constraint

f(T (z = 0)) = f(z = 0) = 6H0
2(Ωm0 − 2) . (24)

To this end, contrary to the case of f(R) gravity, one can recast the cosmo-
graphic parameters as [10]

q0 = −1 +
3Ω̃m0

2
(

1 + 2F̃2

) , (25)

j0 = 1−
9Ω̃2

m0

(
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)
2
(
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)3 , (26)

s0 = 1− 9Ω̃m0
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(
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)
2
(
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27Ω̃3
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)
4
(
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)2

2
(
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)5 , (27)

where the unknown coefficients are formally rewritten as Ω̃m0 = Ωm0
F1

, F̃i =
Fi
F1

and Fi = T i−1
0 f (i)(T0) for i = 1, 2, 3, 4. Their exact expression can

be found in [6]. To match the numerics, we can consider the same auxiliary
functions as above and then we can reconstruct the function f(T ), onceH(z)
is taken to be the cosmographic version of Eq. (3). To take into account the
error propagation due to the uncertainties in cosmographic parameters, it
is enough to baptize with a rescaling factor α the new auxiliary function,
namely αf(z) −→ f(z). The value of the constant α will be determined
from cosmological constraints. One thus gets

f(T ) = αA+
αB
4Q2

[
2
(
q2

0 − j0
)

+

(
4M(T )

H3
0

)1/3

+

(
16H3

0

M(T )

)1/3

×
(
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0

(
6 + 12q0 + 7q2

0

)
− 2j0

(
3 + 7q0 + 5q2

0

)
− 2s0(1 + q0)

) ]2

× exp

{
C

2Q

[
2
(
q2

0 − j0
)

+

(
4M(T )

H3
0

)1/3
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(
16H3

0

M(T )
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×
(
j2
0 + q2

0
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6+12q0+7q2

0
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0
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) ]}
, (28)

whereM(T ),P(T ),Q and N are explicitly reported in [6].
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4. Final outlooks and perspectives

In this short report, we have analyzed the role of cosmography in the era
of precision cosmology, and its implications in discriminating among concur-
ring cosmological models. In particular, we studied whether cosmography
can discriminate between dark energy scenarios and extended/modified the-
ories of gravity. To do so, we initially reviewed the basic demands of the
cosmographic treatments and its limitations. Afterwards, we analyzed the
role played by rational approximations and their use in healing the con-
vergence issue, i.e. the problem related to the use of high-redshift data in
Taylor series expanded around z = 0. The matching of the cosmographic
recipe in view of f(R) and f(T ) theories has been therefore summarized.
We gave particular emphasis on how to reconstruct, through a sort of back-
scattering procedure, the shapes of f(R) and f(T ) through the use of aux-
iliary functions f(z). We proposed test-functions to be used in this scheme
and we showed the main consequences in cosmology. We conclude that these
approaches will need refined improvements to be fully-predictive. Indeed,
until now, the cosmographic approach is essentially capable of suggesting
the models that better adapt to kinematics, without windowing any new
landscapes in the dark energy evolution. Even though new insights have
been proposed by current cosmography, future steps to enable cosmography
to disclose the nature of dark energy are essentially based on reformulating
it in terms of high-redshift data. This will permit to handle any data with
improved experimental bounds at a very significant statistical level.
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