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We present a covariant approach to the problem of light beam propa-
gation in cosmological models within the framework of classical geometric
optics in general relativity. Using the concept of screen surface orthogonal
to the observer’s world-line and to the bundle of geodesics, we introduce
covariant four-dimensional definitions and derive propagation equations for
Sachs and Jacobi optical fields and for the area distance.
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1. Introduction

The basics of the theory of light propagation were developed in [1, 2]
where the geometry of congruence of null geodesics was considered. In
this approach, there is used a pseudo-orthonormal tetrad which is parallelly
transported along the rays, and the central role in equations is played by
the optical scalars which characterize the rate of change of the geometry of
cross section of the bundle. Another approach presented in [3–7] is based on
the behavior of the connecting vectors which relate neighboring rays in the
bundle and which obey the geodesic deviation equation. Both approaches
are theoretically equivalent but computationally they provide two distinct
ways for obtaining the area distance.

Here, we provide an alternative description of the light propagation which
fully utilizes the notion of the observer’s screen surface. It enables space-
time tensor fields to be covariantly split into parts which are parallel to the
observer’s 4-velocity or to the beam’s spatial direction or otherwise orthogo-
nal to both of these vectors. This method is similar to the temporal-spatial
splitting known from cosmology [8, 9].
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2. Formulation

We consider some cosmological model given by a metric field of space-
time gmn and a 4-velocity of cosmic fluid un. The 4-velocity is normalized
as uaua = −1. We assume the observer which is co-moving with the matter.

In the geometric approximation to the optics, the received electromag-
netic waves are nearly plane, monochromatic and short. The light propa-
gates along rays whose wave vector kn is null, irrotational and obeys the
geodesic equation

kaka = 0 , ∇mkn = ∇nkm , k̇n = 0 , (1)

where the dot denotes Ẋ ≡ ka∇aX. This means that the light rays are
potential null geodesics (the potential is the phase of the wave).

The measured circular frequency of the wave ω is defined as ω = −uaka.
The screen field Smn is defined as a symmetric field projecting onto the
surface simultaneously orthogonal to the observer’s 4-velocity and to the
wave vector. These conditions yield

Smn = − 1

ω2
kmkn +

1

ω

(
kmun + umkn

)
+ gmn . (2)

For a given wave vector, all relevant quantities measurable by the observer
are contained in the screen surface.

We also define the area field Amn as a totally antisymmetric field on the
screen surface

Amn = − 1

ω
kbuaAmnba , (3)

where Aklmn is the alternating, totally antisymmetric field of space-time. It
represents the effective area element on the screen surface.

Let us now consider a light beam consisting of close geodesics. If the
beam is infinitesimally narrow, all rays comprising this beam have the same
wave vector kn. The change rate of geometry of the beam’s screen-section
is described by the optical deformation rate field Dmn

Dmn = Sm
bSn

a∇bka . (4)

This field is symmetric since the wave vector is irrotational. It could be
further decomposed into its trace-free and pure-trace parts as

Dmn = Σmn +
1

2
SmnΘ , Σa

a = 0 . (5)

The traceless field Σmn is the optical shear rate and it represents the change
rate of shape of the beam’s screen-section. The scalar Θ is the optical
expansion rate and it represents the change rate of size of the beam’s screen-
section. These two fields are called the Sachs optical fields.
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The transport equations for optical fields along the considered beam are
obtained from the Ricci identity for the wave vector

∇l∇mkn −∇m∇lkn = Rlmn
aka , (6)

where Rklmn is the Riemann tensor. After suitable projections, we get two
coupled equations

Sm
bSn

aΣ̇ba =−
(
Σm

aΣna− 1
2SmnΣ

baΣba

)
−ΣmnΘ−Sm

dkcSn
bkaCdcba ,

(7)
Θ̇ =−ΣbaΣba − 1

2Θ
2 − kbkaRba , (8)

where Cklmn is the Weyl tensor andRmn is the Ricci tensor. These equations
are called the Sachs optical equations. Since the optical expansion rate is
singular at the observation event, we cannot solve this system of equations
immediately.

The actual geometry of the beam’s screen-section is characterized by the
on-screen Jacobi field Jmn which is defined by the equations

Sm
bSn

aJ̇ba = Dm
aJan , (9)

uaJna = uaJan = 0 , kaJna = kaJan = 0 . (10)

The Jacobi field represents the Jacobi matrix of the map relating the physical
separations of rays within the beam with the angular separations of these
rays seen on the observer’s screen. The determinant of the Jacobi field J is
the Jacobian of this map which is the ratio of the physical area of the beam’s
screen-section to its observed solid angle. Thus, we define the area distance
∆ from the observer to the source as the square root of the determinant of
the Jacobi field

∆2 = J . (11)

The determinant of the Jacobi field can be calculated with the help of the
area field from

AmnJ = AbaJmbJna , (12)

which gives
J = 1

2

(
Jb

bJ
a
a − JabJba

)
. (13)

This result establishes the covariant formula for the area distance.
The propagation equation for the Jacobi field is obtained from its defi-

nition by differentiation

Sm
bSn

aJ̈ba = −Sm
dkcSebkaRdcbaJen . (14)

Once we find the solution of this equation, we can calculate the area distance.
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Returning to the Sachs optical equations, it can be shown that the optical
expansion rate is expressed by the area distance as follows:

Θ = 2
∆̇

∆
. (15)

Hence, we rewrite the Sachs optical equations into a more suitable form

Sm
bSn

aΞ̇ba =−
1

∆2

(
Ξm

aΞna−
1

2
SmnΞ

baΞba

)
−∆2Sm

dkcSn
bkaCdcba ,

(16)

∆̈=−1

2

1

∆
ΞbaΞba −

1

2
∆kbkaRba , (17)

where we have introduced the scaled optical shear rate Ξmn = ∆2Σmn.
This system of equations can be solved to obtain the area distance directly.

In order to impose the initial conditions for the considered equations,
one needs the relation between the scaled optical shear rate and the Jacobi
field

Ξmn = −∆Sm
bSn

a

(
Jba

(
Jc

c

∆

)̇
− Jb

c

(
Jca

∆

)̇)
. (18)

Since the observation event is a vertex point for the beam’s rays, the Jacobi
field vanishes there

Jmn

∣∣
0
= 0 . (19)

By the relationships between the respective fields, this implies that

∆
∣∣
0
= 0 ,

Jmn

∆

∣∣∣
0
=
J̇mn

∆̇

∣∣∣
0
, (20)

Ξmn

∆2

∣∣∣
0
= 0 , Ξmn

∣∣∣
0
= 0 ,

(
Jmn

∆

)̇∣∣∣
0
= 0 , (21)

and additionally there follows the identity between initial conditions for
derivatives of the area distance and the Jacobi field

∆̇2
∣∣
0
=

1

2

(
J̇b

bJ̇
a
a − J̇abJ̇ba

) ∣∣∣
0
. (22)

In practice, we shall impose the initial conditions for only two of the compo-
nents of the scaled optical shear rate. Likewise, we give the initial conditions
for four of the components of the Jacobi field.
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The initial condition for the derivative of the area distance comes from
the physical requirement that in the vicinity of the vertex, the distance
should correspond to the path traveled by the photon with respect to the
observer. If S is the affine parameter along the geodesic xn crossing the
vertex, then the infinitesimal distance dl from the observer in the direction
of the source can be estimated as

dl = −dadxa = −dakadS = −ωdS . (23)

Hence, this gives
∆̇
∣∣
0
= −ω

∣∣
0
. (24)

The initial conditions for the components of the derivative of the Jacobi field
are subjected only to the identity mentioned above and otherwise, they are
unrestricted.

3. Summary

We have presented the problem of light propagation in a narrow beam
in terms of the splitting of space-time. This enabled us to give covariant
definitions for basic quantities characterizing properties of the propagating
light beam, most notably for the area distance. The formulation presented
here is complementary to the existing two-dimensional approaches. Since
it is mainly oriented on the observer’s measurements, it could be especially
useful in applications to cosmology for studies of light beam propagation in
various cosmological models. More details can be find in [10].
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