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The functional Schrédinger equation in curved space-time is derived
from the precanonical Schrédinger equation. The Schrédinger wave func-
tional is expressed as the trace of the multidimensional product integral of
precanonical wave function restricted to a field configuration. The func-
tional Schrodinger representation of QFT in curved space-time appears as
a singular limiting case of a formulation based on precanonical quantiza-
tion, which leads to a hypercomplex generalization of quantum formalism
in field theory.
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1. Introduction

Precanonical quantization [1-5] is the approach to field quantization
based on the De Donder—-Weyl (DW) generalization of Hamiltonian formal-
ism to field theory [6] which does not require the space-+time decomposition
and treats all space-time variables on equal footing. Despite the DW theory
has been known since the 1930s and it was considered as a possible basis
of field quantization by Hermann Weyl himself [7], its various mathematical
structures have been studied starting from the late 1960s (with the rele-
vant notion of the multisymplectic structure coined in Poland [8]), it is the
structure of the Poisson—Gerstenhaber algebra of Poisson brackets defined on
differential forms found within the DW Hamiltonian formulation in [5, 9, 10]
which has proven to be suitable for a new approach to field quantization.
Further discussion of this bracket or its different treatments and generaliza-
tions can be found e.g. in [11-16]. It also has been instrumental in recent
discussions of various classical field theoretic models of gravity and gauge
theories in [17-19].
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September 23-26, 2019.
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Applications of precanonical quantization so far include quantum gravity
in metric [20-23] and vielbein variables [24-28|, and quantum Yang-Mills
theory [29-31]. However, the connection with the standard techniques and
concepts of QFT still remains insufficiently explored.

Many aspects of the relations between the DW Hamiltonian theory and
the canonical Hamiltonian formalism have been studied since the early 1970s
including [8, 10, 13, 14, 32-35]. The nature of those relations is that, typi-
cally, a covariant geometrical object from the DW Hamiltonian theory leads
to its canonical counterpart after the space+time decomposition, restriction
to a subspace representing the Cauchy data and then integration over it.
Hence the name “precanonical” for the DW Hamiltonian formalism and the
related quantization.

On the quantum level, the connection between precanonical quantization
and the functional Schrédinger representation of QFT [36] was found for
scalar fields [34, 37, 38] and YM fields [29-31] in flat space-time. As a step
towards understanding the connections between precanonical quantization
of gravity [20-24, 26-28] and the existing approaches based on canonical
quantization [39, 40], we have also explored a possible extension of those
results to curved space-time [41-43]. The present discussion is a concise
presentation of those papers.

As in the case of flat space-time, it will be shown that the functional
Schrodinger representation in curved space-times [44, 45| emerges from the
description derived from precanonical quantization as a singular limiting
case.

2. Precanonical description of quantum scalar theory

Let us start from the Lagrangian density £ = %ﬂg’“’@mﬁ@,@— VIV (o),

where g,,(x) is the space-time metric, g := |det(g,)|. It defines the den-

sities of polymomenta p# := % = /99" 0,¢ and the DW Hamiltonian

density $) = \/gH := ptd,¢(p) — £ = ﬁguyp“p” +/gV (¢). Then the field

equations take the DW Hamiltonian form of
dp#(z)/dat = —0$/0¢, do(z)/dzt = 0% /opt . (1)

The Poisson bracket operation defined by the weight +1 density valued
x-dependent polysymplectic structure 2 = dp# A d¢ A @, where @, =
Op ) (dz® Adat A ... Ada™ Y ields [1, 9, 10]

{Ipuwm ¢H =1, {[p“w#, ¢wu]} =Wy, {IPM’ ¢wu]} = 55 . (2)

These fundamental Poisson brackets are quantized according to the modified
Dirac quantization rule
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A, B] = —ihy/g{A, B} 3)

leading to the following representations of precanonical quantum operators:

. . R 1 ~ 1
Pt = —ihse\/gy" 0y , @y = H= —§h2%28¢¢ +V(g), (4)

where v* are x-dependent Dirac matrices, y#+* 4+ y#4#* = 2g*¥, the compo-
sition of operators is the symmetrized Clifford (matrix) product and s is a
ultraviolet scale appearing on dimensional grounds.

The curved space-time version of the precanonical Schrodinger equation
takes the form of

sV W = H | (5)

where V, := 0, + w,(x) is a covariant derivative of Clifford algebra valued
wave functions ¥(¢,2*) with the spin connection matrix w, = %OJZ?BZAB
acting on the Clifford-valued ¥ via the commutator product, where v are

the Minkowski space Dirac matrices.

3. Relating the functional Schrodinger picture
and precanonical quantization

The issue we would like to address here is a relation between the de-
scription of quantum fields derived from precanonical quantization and the
standard QFT based on canonical quantization. More specifically, we would
like to generalize the relation found in flat space-time in the case of quantum
scalar field theory [34, 37, 38] and quantum YM theory [29, 31] to curved
space-time. Our presentation here follows [41-43].

In curved space-time, quantum scalar field can be described in terms of
the wave functional ¥([¢(x)],t) of field configurations ¢(x) at the time ¢
which obeys the Schrodinger equation [44, 45]

h? 52 1,
o = [az g (g M08 - La00@0i0a@) + Vo)) 2. ©
where the space-time coordinates adapted to the codimension-one space-like
foliation are used such as go; = 0, g;; is the induced metric on the space-like
leaves of the foliation, and z# = (t,z) = (¢,2%). As in all our papers, bold
capital Greek letters like ¥, @ denote functionals and plain capital Greek
letters like ¥, @ denote (precanonical) wave functions.

The problem of relating the canonical Schrédinger equation in functional
derivatives with the partial derivative precanonical Schédinger equation (5)
manifests itself already on the classical level: in [34], we have shown how the
partial derivative DW Hamilton—Jacobi equation is related to the canonical
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Hamilton—Jacobi equation in variational derivatives. Our initial consider-
ation in flat space-time recently was extended to curved space-time and
general relativity in [35].

On the quantum level, the idea is that the wave functional is a functional
of field configurations because it is a composed functional of precanonical
wave function ¥(¢%, z) restricted to the section X' in the total space of the
bundle with the coordinates (¢%, x) which represents a field configuration
¢(x) at the moment of time t: Uy := ¥ (¢* = ¢*(x), x, t), i.e.

([p(x)],t) = Wz (1), ¢(2)] .- (7)

In this case, the time dependence of the wave functional ¥ originates from
the time dependence of precanonical wave function restricted to X', and the
variational derivatives of ¥ can be related to the partial derivatives of ¥y.

By denoting & (x) := 5W(S§m) (WT is the transpose of ¥), we obtain

i, = Tr / dz {®(z)i0Ws(x,t)} ,

5(‘;21) — Tr {B(2)0¥s (@)} + SiZ:) ,
2 0 X
5:;(;2 = Tr {5(0)@(:12)3@5@2(%) + Qfsi((w)) 8¢W2(m)}
52w N4
+ Tr Tr { 5&0;(33) % 5@;(58) 8¢W2(w) ® 8¢LT/E(:L')} + &b(m)z ) (8)

where 9,¥s(x) = (0V/09)|s(x), Ope¥s(x) = (0*¥/0¢?)|x(x), § is the
partial functional derivative with respect to ¢(x), as opposite to the total
functional derivative §, and §(0) is a regularized value of §Wx (z) /WL (x') at
x = x’, which can be defined using a point splitting or lattice regularization
to make sense of (n—1)-dimensional delta-function é(x — ') at equal points.
The time derivative of ¥y is determined by the restriction of precanonical
Schrodinger equation (5) in space+time decomposed form to X

00y = —iyoy (daﬂ — 3¢¢(93)8¢> Uy, — iy wi, ¥x] — i[wo, Ps]

+Eﬁ1’27 9)
a4

where % =0+ 8205(:12)% + 81‘(;5;@(:8)% + ... is the total derivative along
Y with ¢ denoting the fiber coordinates of the first-jet bundle of the bundle
of field variables ¢ over space-time such that, when restricted to X, ¢, =

Orp(x).
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By substituting (9) to (8), we obtain

) ., d .
ow =T [oa {¢<w,t>(—w L o) + i ()0 ()

/

I II

— 07 [wi, Us(z)] — i[wo, ¥ —g’mawl’z(il?)

11T v \%

+ LV ee)rs@) | (10)

VI

By comparing the term V with the first term in (8) and (6), we conclude
that the relation between them is only possible under the limiting mapping
— such that

Yo > @5(0). (11)

V9

We will see in what follows that the same condition also appears in other
places when we are trying to establish a correspondence between the terms
n (10) and the ones in (6).

The potential term VI in (10) should reproduce the potential term in (6).
It is easy to see that it is possible only if at any spatial point «, there is a
mapping > such that

Tr {@(m) i%g@(m)} — G, (12)

The study of this conditions shows [41] that it can be fulfilled if the third
term in (8) vanishes and the limiting condition (11) is satisfied.

Using the fact that /g = v/gooh, where h := | det(g;;)|, and /5007° = 70,
the condition (11) takes the form of

Yo7 = 8(0)/Vh = 6"(0), (13)

where §™V(x) is the invariant (n — 1)-dimensional delta-function such that
[dzVhé™ (x) = 1. Besides, the above definition of §™(x) implies that
6™V(0) is the inverse of the invariant volume element v/hda. Then (13) is
equivalent to

1
= yoVhde . (14)
PP

This interpretation will be used below when writing the product integral
expressions of the wave functional in terms of precanonical wave function.
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Our next observation is that the second term in (8) is similar to the
term II in (10) in that both contain 0,¥s and do not have a counterpart
in (6). Hence, they have to cancel each other at least in limit (11), i.e.

goo 5@(&3)

i® ()0 0id(x) + T2 = 15
(®)707'0i¢() /3 50(x) (15)

The solution of (15) can be written in the form of
() = Z([Ws]; &)e @ did@)/ = (16)

55%(%@) = 0. Therefore,

the required cancellation of the terms with Jy¥x () in limit (11) fixes the
form of the functional @(x). This allows us to express the wave functional
¥ in the form of

where the “integration constant” Z([¥x]; &) obeys

v~ Tr {E([Wg], x) e i0(@)7' Bid(x) /= l1172(:13) ;o (17)

V9 } |s—705(0)/ /3

which is valid at any point @; ~ here and in what follows is the equality up
to a normalization factor which may depend on s and ,/g. The notation

{... }‘%HWJ(O)/\@ means that s is replaced by 706(0)/,/g according to the

limiting map (11).
Now, using (17), for the last term in (8), we get

Lo 0°F
2.,/9¢(x)?

that reproduces the second term in the functional derivative Schrodinger
equation (6).

Thus, in the limiting case (11), we have derived all terms in (6) from (10).
However, the terms I+ IIT + IV in (10) still have played no role. One can
argue based on the specific form of @(x) found in (16) and the covariant
Stokes theorem that I4I1I have vanishing contribution to the time evolution
of ¥ (see [41] for details). Then the effective equation for 0%y in (8) reads

> —%\/ggij&(b(w)aﬂb(w)!p (18)

latWE = 7 (—28¢¢ + 1y 81(25(:13)8(1) + %V(¢)> WE — 1[w0,W2]
::ﬁg—i[wO,WZ]. (19)
By introducing ¥§, := U~ 1¥sU, flé := U~ YHoU, where

U, t) = Te Jo dswol@s) (20)
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is the tranformation determined by the time-ordered exponential, we obtain

10,0 = U HyWsU = HyW'

» " 1 (21)
= 76 <—28¢¢ + w”@gﬁ(a})% + %V((Z))> !p/,
where the transformation v# — A/#: 4/#(x) = U Y(z)y*(2)U(z) is an
automorphism of the Clifford algebra as 7/#~/V +~"Vy'# = 2U L g U = 2g".
Using (21), we write

. or . L)' 2B

By comparing it with (8) and (9), we conclude that the term IV is taken
into account if the quantities in the expression of the wave functional in (17)
are replaced by the primed (U-transformed) ones, i.e.,

) /
¥ e { (0 0) e a0 T (23)

V9 } |o—s755(0)/ /5

The fact that this expression is valid for any choice of the point x allows
us to fix Z'([¥5]; &) and obtain the expression of ¥ in the form of a formal
continual product

U~ Tr { H e—iqﬁ(m)wam(m)/%logz(¢(m)7 z, t)} (24)
X

PO

This symbolic formula expresses the Schrodinger wave functional in terms
of precanonical wave function restricted to a field configuration X' in general
space-time (in the adapted coordinates with go; = 0).

The formal continual product expression in (24) can be understood as
the multidimensional product integral [46, 47| with the invariant measure

Vhdzx

@~ Tr {T(e”(”””(w)a”@/ (@), @, 1) (25)

€T

1 )
} | L () Vhda

where the notation of the product integral of matrix-valued functions F'(x)
is used

TeF@d= — T (1 + F(x)da) . (26)

xr
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Expression (25) generalizes our previous result in flat space-time [37] to
curved space-times. In curved space-times, the spatial integration mea-
sure dx is replaced by the invariant one vhdx, and the Dirac matrices
are x-dependent and nonlocally ¢-dependent if wgy # 0.

Note that one-dimensional product integral coincides with the well-known
path- or time-ordered exponential. The multidimensional generalization is
more problematic [46, 47]. However, the trace of the multidimensional prod-
uct integral can be understood as the continuum limit of the averaging of
the product of matrices in the infinitesimal cells of space over all possible
permutations of them in the product over all the cells, if the corresponding
limit exists

Tr T( Fade _ o Loy Z F@)A@ F@)das  Flex)Aery

oeV N—oo V! PN
(27)
where P(N) is the set of all permutations of (1,2,...,N), the volume of
integration V' > @ is partitioned into N small sub-volumes Axq,...,Axy

whose volumes are vanishing in the N — oo limit, and F'(x;) denotes the
matrix F' at a point x; € Ax;.

In static space-times when wy = 0, there is no non-local time depen-
dence of the quantities in the expression of ¥ in terms of precanonical wave
function, and equation (19) can be solved by the Ansatz

Uy = eJri%<z5(w)'yi8¢¢>(fﬂ)4527 (28)
where @5 obeys
) - ” 1 . 1
10iP5x = Yo(x) <—23¢¢ — 3,9 I(2)0ip(x)0;p(x) + %V(Qb)) Py, (29)
with . _ . .
() = ¢~ =@ 0@ () o O(@)Y D) (30)

and v* — 4 being a local Clifford algebra automorphism. From (29), it
follows that @5 can be taken in the form of @5, = (1++")%. , where &5 is
a scalar function such that

1

005 = i (~ 200~ g @000 + LV (0)) 0. (3

In terms of the scalar function @3, the wave functional (25) reduces to the
curvilinear product integral of scalar functions

v~ Jleso@.en), | g (32)

which can be defined without any complications related to the definition of
the multidimensional product integral of non-commutative matrix functions.
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4. Conclusion

It is demonstrated that in the case of scalar field theory in curved space-
time, the precanonical Schrodinger equation (5) leads to the canonical func-
tional derivative Schrodinger equation (6) in the limiting case when g
is replaced by §™Y(0) whose regularized value is the ultraviolet cutoff of
the volume of momentum space, whose introduction is one of the ways of
defining the second variational derivative at equal points in the canonical
functional derivative Schrodinger equation (6). As a by-product, we also
obtain the expression of the Schrodinger wave functional as the continual
product or product integral of precanonical wave function restricted to a
field configuration. In space-times with vanishing zero-th component of spin
connection, this expression reduces to the product integral of a scalar func-
tion obtained from precanonical wave function. In non-static space-times
with non-vanishing zero-th component of spin connection, the Schrédinger
wave functional is expressed in terms of the product integral of a non-local
transformation of precanonical wave function defined by a time-ordered ex-
ponential of the zero-th component of spin connection.

We hope that these results can stimulate new approaches to the treat-
ment of effects of quantum fields in curved space-time [48], such as the Hawk-
ing radiation, and they also can lead to better understanding of the nature
of states of quantum fields in arbitrary space-times when a separation to
positive- and negative-frequency modes is not possible. They also may help
to clarify the connections between the existing approaches to quantum grav-
ity originating from the canonical quantization of general relativity [39, 40|
and precanonical quantization of gravity (see [20-28]).
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