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In a macroscopic–microscopic approach, the Fourier parametrization of
deformed shapes is used to describe the deformation-energy landscapes of
nuclei in a 6-dimensional deformation space. A special attention is hereby
paid to the convergence of this expansion, in particular for nuclear shapes
in the vicinity of the scission configuration. It is shown that the Fourier
expansion converges very rapidly and that contributions of multipolarity
higher that 4 can be safely neglected, even for extreme deformations as
they occur close to the scission configuration.
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1. Introduction

Using the macroscopic–microscopic model with the Lublin–Strasbourg
Drop (LSD) [1] for the macroscopic part together with the Strutinsky shell-
correction method [2] and BCS pairing correlations [3] for the quantum
mechanical corrections, where a Yukawa-folded mean-field potential [4, 5]
has been used to determine the single-particle energy spectrum for protons
and neutrons, the energy of a given nucleus is calculated as a function of
the nuclear deformation. In order to exploit in an optimal way all the rela-
vant deformation degrees of freedom, a recently developed Fourier shape
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parametrization [6, 7]
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has been used. This parametrization has been shown [7–9] to be, indeed,
very rapidly converging and able to describe nuclear systems throughout the
periodic table. With only 4 deformation parameters, corresponding to elon-
gation, left–right (reflection) asymmetry, neck formation and non-axiality,
one is able to describe or predict ground-state properties from the oblate
side to the large prolate deformations in the rare-earth region, or more so,
in connection with the fission process. It has even been shown that these
Fourier shapes are able to predict the mass partitioning in the fission pro-
cess at low excitation energy, and its evolution with proton and neutron
number [7]. This parametrization has been extensively discussed in several
of our recent publications [7–9] and shall, therefore, not be further detailed
here. Let us simply mention that it can easily be generalized to describe
also shapes that break axial symmetry. A crucial point that needs to be
emphasized is given by the fact that instead of the Fourier coefficients aν
defining the shape in Eq. (1), it is far better to define shape coordinates qν ,
determined through the aν . These qν parameters are defined in such a way
that the liquid-drop fission path is given by vanishing qν , except for the
elongation parameter q2 which is positive for prolate and negative for oblate
shapes (q2 = 0 for a sphere). This analysis changes marginally when quan-
tum effects are included into the picture, but even then, the deformation
coordinates qν , ν 6=2 stay small (except possibly of the left–right asymmetry
parameter q3 and the neck (hexadecapole) parameter q4), which guarantees
a very fast convergence of the Fourier shape parametrization [8].

2. Results and discussion

Using the above-defined approach, deformation-energy landscapes can
be determined for any nuclear system as a function of the above-introduced
shape coordinates qν , where special attention will be put on the conver-
gence of the Fourier expansion for large deformations, in particular, close
the scission configuration. Since this is precisely the region characterized
by the transition from a mono-nuclear to a di-nuclear sytem, special atten-
tion needs to be paid to the border line between these two regimes, where
the expansion of Eq. (1) will yield negative values, thus defining the scis-
sion configuration. To avoid such inconvenience, one should clearly define,
as a function of the qν shape coordinates, the transition line between sim-
ply connected and disconnected shapes. The result of this investigation is
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Fig. 1. (Color online) Scission line for axially symmetric systems in the (q4, q6)

plane (for q3= q5=0) and the (q3, q5) plane (for q4= q6=0) for different values of
the elongation coordinate q2. Connected shapes are located between lines of the
same pattern/color.

shown, for axially symmetric deformations and for different (large) values
of the elongation parameter q2, in Fig. 1 through the border line between
connected and disconnected shapes for left–right symmetric deformations
(q3 = q5 = 0) as a function of the (q4, q6) parameters and, for left–right
asymmetric deformations, as a function of (q3, q5) (with q4 = q6 = 0). The
LSD liquid-drop-type energy at such large deformations is shown, again for
axially symmetric shapes, as a function of the (q4, q6) parameters in Fig. 2.
The forbidden region of disconnected shapes is clearly visible in the lower
left and right corners. To get some feeling about the nuclear shapes that are
envolved, we show close to the intersection between allowed and forbidden
regions the deformed shapes that are obtained at these points just prior to
leaving the allowed region.
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Fig. 2. LSD liquid-drop-type deformation energy for 240Pu in the (q4, q6) plane for
two different values of the q2 elongation parameter, q2 = 2.3 (left) and q2 = 2.5

(right). The other deformations coordinates are set to zero. q1 stands here for the
non-axiality parameter (see Refs. [6, 7]).
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As a first interesting result, one notices that the minimum energy is
always obtained at an essentially vanishing value of q6. The same, again very
favorable result, is found concerning the left–right asymmetry parameter
q5, as demonstrated in Fig. 3 where the deformation-energy landscapes for
240Pu are shown in the (q3, q5) plane. While Figs. 2 and 3 are obtained for
the liquid-drop part, Fig. 4 shows the same when quantum corrections are
included in the calculation.
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Fig. 3. The same as Fig. 2 for the (q3, q5) deformation plane for 2 different values
of the elongation parameter, q2=2.3 and 2.5. The other deformations coordinates
are set to zero.
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Fig. 4. Deformation energies for 240Pu as Figs. 2 and 3 but now with the inclusion
of shell and pairing-correction energies.
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From both these figures one concludes again that, even for the extreme
deformations considered here (see the shapes sketch in Fig. 2), the higher-
order shape coordinates are essentially not coming into play.

One could now argue that for heavy nuclei like 240Pu, where saddle and
scission points are well separated, the situation might be different than in
lighter nuclei where they are rather close together. We have, therefore,
done the same kind of study for 202Hg, but, here again, the location of the
minimum-energy points in the (q3, q5) and (q4, q6) landscapes do practically
not change.

Fig. 5. Total deformation energy for the nucleus 240Pu in the (q2, q3) plane, obtained
after minimisation with respect to q4. A symmetric (q3 = 0) and an asymmetric
fission valley (at q3 ≈ 0.09) are clearly identified.

Up to this point, our systematic study seems to indicate that the higher-
oder shape coordinates (beyond q4) do not play any role and can safely be
neglected in the study of the fission process. To confirm our conclusions,
let us investigate in some detail the behaviour of the different (left–right
symmetric and asymmetric) fission valleys in 240Pu. A left–right asymmetric
fission valley is clearly identified corresponding to a q3 parameter of q3≈0.09.

For a value of the elongation parameter q2 = 2.1, the value of q4 which
minimises the total (quantum) energy is q4 = −0.10. We are, therefore,
exploring the energy landscape for these coordinates in the (q5, q6) defor-
mation space, as shown in Fig. 6. The left–right symmetric (q3 = 0) fission
chanel is found for the same elongation (q2 = 2.1) to correspond to a neck
parameter of q4 ≈ 0.02. The corresponding (q5, q6) landscape is shown in
Fig. 7.

From both these figures we conclude that the Fourier shape coordi-
nates that minimize the total energy including quantum corrections are
well-approximated by q5 = q6 = 0. In other words, even for such extreme
deformations as those occuring close to the scission instability, neglecting
the Fourier shape parameters beyond q4 turns out to be a very good approx-
imation.
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Fig. 6. Energy landscape in the (q5, q6) deformation space for the nucleus 240Pu at
an elongation defined by q2 = 2.1 and an asymmetry of q3 = 0.09, corresponding
to the asymmetric fission chanel identified in Fig. 5.
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Fig. 7. The same as Fig. 6, but now for the symmetric (q3 = 0) fission chanel at
the same elongation.

3. Summary

Using the Lublin–Strasbourg Drop, shown to reproduce nuclear masses
and fission barrier heights practically throughout the periodic table, together
with Strutinsky and BCS quantal corrections, we have calculated nuclear de-
formation energies as a function of the deformation coordinates of a Fourier
shape parametrization that has now also been extensively tested and proven
to be both very flexible and extremely rapidly converging. We have shown
that with only 4 deformation parameters corresponding to elongation, left–
right asymmetry, neck formation and non-axiality, one is able to account
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for the deformation from the oblate side up to the very large deformations
encountered in the fission process. In the present contribution, we have es-
pecially studied the convergence of the Fourier expansion in the immediate
vicinity of the scission instability and found that, here again, the above-
mentioned 4 deformation coordinates are perfectly sufficient to account for
the relevant degrees of freedom in the fission process. This very recomfort-
ing result paves the way, as we believe, to carry out extensive calculations
of fission dynamics by soving the Langevin equation in a 4-dimensional de-
formation space. Work along this direction is under way.
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