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In this article, we discuss the effects of the shape instability against the
first order tetrahedral-symmetry nuclear shape deformation t1 ≡ α32 for
the Z = N nuclei in the vicinity of Z = 40 using a deformed Woods–Saxon
realistic mean-field Hamiltonian. We specifically focus on the effects of the
tetrahedral deformation in its formally leading order, t1, since the recent
discovery of the experimental evidence of the corresponding symmetry in
the 152Sm nucleus opens the new perspectives in experimental identification
of the corresponding exotic nuclear configurations by proposing explicit
unprecedented techniques for such applications.
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1. Introduction

Tetrahedral and octahedral symmetry configurations in atomic nuclei
have attracted attention in the literature from both theoretical and experi-
mental viewpoints during several years. The fact that nuclei presenting such
symmetries may produce new spectroscopic features keeps this topic attrac-
tive especially from the viewpoint of identifying their presence. Recently, the
first experimental evidence for the presence of a coexistence between tetra-
hedral and octahedral symmetries has been announced in Ref. [1]. A partial
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overview of the past publications on the subject can be found in Ref. [2]. In
the present work, we wish to discuss some predictions related to these exotic
shapes possibly present in the ground states of certain N = Z nuclei in the
vicinity of 80

40Zr40.
Tetrahedral and octahedral symmetry studies focussing on the nuclear

structure employ the combined methods of group and nuclear mean-field
theories. In the context of the nuclear mean-field approach focusing on the
nucleonic (thus fermion) degrees of freedom, the corresponding symmetry
point groups are the so-called double tetrahedral TD

d and octahedral OD
h

groups. Both of these symmetries generate four-fold degeneracies of the
single-particle levels differing from the “traditionally” discussed (2j+1)-fold
degeneracies for the spherical nuclei or 2-fold (Kramers or time-up, time-
down) degeneracies for the non-spherical ones. These degeneracies reflect the
mathematical properties of the structure of the irreducible representations of
the corresponding double point groups. For instance, the TD

d group has two
2-dimensional and one 4-dimensional irreducible representations implying
that the ensemble of single-particle energies forms two families of two-fold
and one family of four-fold degenerate levels.

The presence of four-fold degeneracies impacts the average density of
the single-particle energies. In particular, the numbers of levels carrying
the same number of nucleons in the presence (absence) of such symmetries
will be, on average, lower (higher). Given the fact that the depth of the
average potential well is to an approximation constant (it depends on the
particle numbers only very weakly) implies that the single-nucleon spectra
in the presence (absence) of tetrahedral and/or octahedral symmetries may
produce on average bigger (smaller) single-particle shell gaps. Bigger gaps at
certain nucleon numbers imply deeper tetrahedral (octahedral) total energy
minima for the nucleon numbers at their vicinities and favour the exotic
symmetry effects.

The choice of nuclei for the present studies around zirconium is, of course,
not accidental. The previous studies in Ref. [3] already revealed tetrahedral
magic gaps at the proton and neutron numbers at Z/N = 32, 40, 56, 64,
70, 90, 112 and 136. On the other hand, studies of N = Z nuclei with
A ∼ 60–80 have been carried out in the past in Ref. [4] using a Skyrme HF
interaction. In the present article, we wish to examine the possible pres-
ence of the tetrahedral-symmetry effects using the realistic phenomenologi-
cal deformed mean-field Hamiltonian in its Woods–Saxon realisation for the
nucleon numbers close to the lightest tetrahedral magic gaps configurations.
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2. Collective features and the issue of symmetry-identification

It is well-known that an arbitrary nuclear surface, Σ, can be described
with the help of spherical harmonic basis {Yλµ(θ, φ)}

Σ : R(θ, φ) ∼ Ro

[
1 +

∑
λ

∑
µ

αλµYλµ(θ, φ)

]
, (1)

where {αλµ} represents the full set of deformations considered and R(θ, φ)
denotes the distance from the origin of the reference frame to the actual point
on the surface. Let us consider the nuclear multipole moments defined by

Qλµ =

∫
ρΣ(~r ) r

λ Yλµ(θ, φ)d~r , (2)

where ρΣ(~r ) is the nuclear density associated with the nucleons inside the
surface Σ. It turns out that when calculating the quadrupole moments
as functions of octupole deformations {α3µ} with the surfaces symmet-
ric under the octahedral- and/or tetrahedral-symmetry groups, the implied
quadrupole moments vanish and it follows that the B(E2) transitions vanish
as well. Consequently, the atomic nuclei in the high-rank symmetry states
must not generate the collective E2 (neither E1 as one can show indepen-
dently) transitions and it is expected that they may become isomeric what
could greatly facilitate their experimental identification with an appropri-
ately chosen instrumentation.

Another consequence of high-rank symmetries is that the implied rota-
tional bands are composed of specific spin-parity sequences involving de-
generate multiplets (doublets, triplets, . . . ) rather than the bands very well
known form the nuclear physics literature. For instance: for the tetrahedral-
symmetric even–even nuclei, the rotor Hamiltonian of the corresponding
nucleus is invariant under the Td -group which has 5 irreducible representa-
tions. The one containing the Iπ = 0+ ground state is usually denoted A1

in the literature, cf. e.g. Refs. [1, 5] and references therein, and it turns out
that the corresponding structure of the tetrahedral ground-state band of an
even–even nucleus is given by the following sequence:

A1 : 0+, 3−, 4+, (6+, 6−), 7−, 8+, (9+, 9−), (10+, 10−), 11−, (2× 12+, 12−), · · ·
(3)

Let us emphasise the presence of the degenerate spin doublets at I = 6,
9, 10 or triplets at I = 12; higher degeneracy is predicted for increasing
spins. Such degeneracies are very characteristic spectral elements potentially
facilitating the experimental identification of these structures. The main
characteristic of these states is that they form approximately a common
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parabola, with the usual energy dependence in the form of E ∼ I(I + 1)
Refs. [5–8]. All these properties can be used nowadays to formulate the
unique experimental identification criteria following their first successful ap-
plication in the discovery article Ref. [1] for 152Sm.

3. Total nuclear energies: Results and predictions

Deformed mean-field Hamiltonian selected for the calculations discussed
in the present article is based on the phenomenological deformed Woods-
Saxon (WS) potential, Ref. [9]. Our selection was justified by the fact that
the corresponding Hamiltonian has significant prediction capacities as man-
ifested by numerous applications over many years by other authors Ref. [10].
The definitions of the tetrahedral and octahedral deformations have become
standard by now, cf. e.g. Ref. [11] and the reader is referred to the original
articles. The mean-field Schrödinger equation has been solved employing
among others the tetrahedral and octahedral deformation spaces. An illus-
tration taking into account the properties previously detailed in Section 1
about the double tetrahedral group and the related specific nucleon-level de-
generacies is presented in Fig. 1. The figure shows specifically the neutron
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Fig. 1. (Colour on-line) Neutron single-particle energy spectrum for 80Zr as a
function of tetrahedral deformation t1 ≡ α32 obtained with the Woods–Saxon
mean-field potential of Ref. [9]. Solid lines represent 4-fold degenerate levels corre-
sponding to four-dimensional irreducible representations of TD

d group, whereas the
dashed lines represent the two 2-fold representations, respectively. Significant gaps
approaching 3 MeV opening at N = 32, 40 and 56/58 deserve noticing.
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single-particle energies for 80Zr nucleus presented as functions of tetrahe-
dral deformation t1 ≡ α32. The presence of characteristic gap openings at
N = 32, 40, 56/58 deserves noticing. Similar properties are valid for the pro-
tons (not shown). Guided by these results, we have studied the tetrahedral-
gap influence on the N = Z nuclei within Z ∈ [28, 50]. We have performed
the total nuclear energy calculations using the standard Strutinsky approach
with the phenomenological Woods–Saxon mean-field Hamiltonian of Ref. [9]
in multidimensional deformation spaces including the quadrupole degrees of
freedom α20 and α22 together with the hexadecapole one, α40, octahedral
one, o1, of Ref. [11], and various combinations involving octupole degrees
of freedom α3µ (recall that α32 represents the lowest order tetrahedral sym-
metry deformation referred to as t1). The nuclear energies projected on the
quadrupole, α20, and tetrahedral, α32 = t1, deformation plane are given in
Fig. 2 showing the results minimised over octahedral deformation parame-
ter o1, Ref. [11], for a number of selected Z=N nuclei. The specific simul-
taneous combination of deformations t1 and o1 in this type of calculations
is particularly relevant given the fact that tetrahedral group is a sub-group
of the octahedral one, Td ⊂ Oh.

The results for 80Zr deserve particular attention in the present con-
text since the corresponding ground-state minimum is predicted to have
a strongly pronounced tetrahedral-symmetry configuration at a32 ∼ ±0.20.
This result reflects the presence of significant single-particle gaps which at
increasing tetrahedral deformation approaches 4MeV limit, as can be seen
from Fig. 1. Competing quadrupole shape minimum at “super-deformation”
of the order of a20 ∼ 0.40 appears significantly higher in the energy scale,
cf. also Ref. [12]. The low-lying, slightly excited tetrahedral minimum is
predicted for the neighbouring 84Mo nucleus in which the barriers surround-
ing the tetrahedral-symmetry minima, slightly in excess of 1 MeV, might
be sufficiently high to generate an excited stable tetrahedral configuration.
The lightest nucleus considered here, 64Ge, is predicted to manifest a pro-
nounced tetrahedral-symmetry instability, but the total-energy barriers sep-
arating the tetrahedral-symmetry minima from the prolate and oblate min-
ima are most likely too low to provide the stable e.g. isomeric configurations.
A similar scenario is likely for 68Se in which the tetrahedral susceptibility is
calculated to be even weaker.

Yet another scenario is predicted for 72Kr and 76Sr in which the ground-
sate configurations are calculated to be quadrupole-oblate, and prolate, re-
spectively, cf. also Ref. [13]. In both nuclei mentioned, there exist stable
α32 6= 0 excited configurations at α20 6= 0. Such minima do not produce
any direct tetrahedral-symmetry mechanism, however, they should give rise
to the octupole-type rotational bands with Kπ = 2− accompanied by the
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Fig. 2. (Colour on-line) Total nuclear energy surfaces for listed nuclei projected onto
the (α20, t1 ≡ α32) deformation plane and minimised over first order octahedral
deformation o1 whose definition was introduced in Ref. [11]. Except for 80Zr, the
ground states are predicted at some non-zero quadrupole deformations. However,
prediction of a rich shape coexistence deserves noticing. It involves the prolate–
oblate shape coexistence and competition, together with the competition with the
tetrahedral-symmetry minima at α32 6= 0.
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parity-doublet structures. The effects of this type render themselves much
easier accessible via experiment as compared to the tetrahedral-symmetry
configurations whose electromagnetic decay is strongly hindered.

4. Summary and conclusions

In the present article, we discuss the predicted shape coexistence and
shape evolution in the nuclear ground states of Z = N nuclei of Ge, Se, Kr,
Sr, Zr and Mo. The discussed nuclear sequence has been selected because
of its rich shape coexistence and shape evolution properties involving the
tetrahedral-symmetry generating deformation α32 ≡ t1. In particular, we
confirm earlier predictions pointing out that the shape of 80Zr in its ground
state is characterised by the well-pronounced tetrahedral symmetry. The
neighbouring 84Mo nucleus also manifests the presence of the tetrahedral-
symmetry minima but at the energy comparable with the energy of the
oblate-symmetry ground state. In 64Ge, the tetrahedral symmetry minima
are predicted at about 500 keV above the prolate ground-state minimum but
the surrounding potential barriers of the order of 500 keV are most likely
too low to lead to a stable minimum with measurable effects.

Except for 80Zr, all the considered nuclei present the prolate–oblate shape
coexistence with the prolate-deformed ground states for 64Ge and 68Se at
α20 ≈ 0.19 and α20 ≈ 0.21, respectively, then super-oblate equilibrium for
72Kr at α20 ≈ −0.4 which requires special attention for its exoticity due to
an unusually strong “flatness” of the shape, followed by the super-prolate
shape minimum for 76Sr at α20 ≈ +0.39. Such super-deformed minima are
also predicted for 80Zr and 84Mo at α20 ≈ 0.41 and α20 ≈ 0.50, respectively.

Finally, the 72Kr and 76Sr nuclei are predicted to produce the negative
parity (exotic octupole) bands of the Kπ = 2− band-head structure, the
former nucleus with the slightly prolate quadrupole deformation superposed
with pronounced component of α32 ≈ ±0.15 and the latter with the very
exotic shape configuration composed of oblate-shape component at α20 ≈
−0.18, superposed with the strongly pronounced component of α32 ≈ ±0.16.

In our opinion, the majority of these predictions represent exoticities
which seem very attractive due to the relative seldomness of the underly-
ing mechanisms and can be tested experimentally either with the γ-multi-
detector systems or with the mass spectrometry device like e.g. Fragment
Separator (FRS) at the GSI, Darmstadt, Germany.
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