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We discuss the problem of time in quantum systems and stress the need
of introducing it as an observable and not just a numerical parameter.
This approach allows to redefine the quantum evolution in the form of
a series of projections onto the spaces of new states. Within this framework,
we describe the temporal version of the double-slit experiment in which
a particle interferes with itself from a different instance of time.
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1. Introduction

In the traditional formulation of quantum mechanics, time is introduced
as a parameter which numbers the subsequent changes of the quantum state.
The time parameter is unbound and continuous. Since the energy may be
bounded from below and discrete, Pauli pointed out that it is impossible
to construct a time operator canonically conjugated to the Hamiltonian [1].
This observation was based on the assumption that all observables have to
be represented by Hermitian operators. In the following years, an extensive
experimental study of quantum systems was performed. It revealed many
non-classical features connected with the entanglement [2] and the delayed
choice setups [3]. It has also been observed that quantum states depend
on time in a similar manner as they depend on the spatial variables [4],
including a possible interference in time [5]. Theoretical description of these
phenomena is inconsistent within the traditional quantum mechanics.
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Recent theoretical studies showed that the Hermitian operator is just
a special case of a wider class, called the positive operator valued measure
(POVM) and that POVMs can also represent measurable quantities. It
turned out that one may define the time operator in the form of a POVM [6],
a fact that opened the possibility to discuss the evolution of quantum systems
in a consistent way.

In this paper, we present the evolution scheme of a quantum system
based on the projection evolution principle. As an example, we discuss the
temporal version of the double-slit experiment, in which a particle interferes
with itself from a different time instance, as was observed in the experiment
reported in Ref. [5].

2. The projection evolution principle

Whenever we mention time, even in the context of quantum systems,
we mean the macroscopic laboratory time. The experiments (see [4, 5] and
references therein) suggest that this time is different from the “quantum
time” in the microscopic scale. From the theoretical point of view, this means
that the time-dependent unitary Schrödinger evolution of the wave function,
given by the exp(−iHt) factor, is just a semi-quantal approximation.

To construct a more general rule, it is convenient to have a parameter
which allows to number the subsequent steps of the evolution. We cannot
use time, so let us introduce a parameter τ , for which the only requirement
is that it belongs to an ordered set. It is not an observable and the final
physical result will not depend on it. As this parameter is not connected
with the macroscopic chronology of events, it cannot be directly mapped
onto the macroscopic time.

A quantum state evolves, if a change of the state can be observed. We
account for that fact, postulating that the new state is obtained by projecting
the old one onto the space of all possible new states. The existence of such
projection operators, which act between state spaces, has been proven in
Refs. [7, 8]. If more than one new state is possible, the system chooses one
of them according to certain probability distribution.

We write the density matrix at the evolution step τn as a normalized
projection of the state at the evolution step τn−1

ρ(τn, νn) =
E|nρ(τn−1, νn−1)E|†n

Tr
[
E|nρ(τn−1, νn−1)E|†n

] , (1)

where νn are the quantum numbers, E|n is the operator which projects the
state ρ(τn−1, νn−1) onto the space of states labeled τn, and the denominator
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gives the proper normalization. The evolution τ0 → τ1 → · · · → τn starting
from the initial state ρ(τ0, ν0) takes the form of subsequent projections

ρ(τn, νn) =
E|nE|n−1 . . .E|1ρ(τ0, ν0)E|†1 . . .E|

†
n

Tr
[
E|nE|n−1 . . .E|1ρ(τ0, ν0)E|†1 . . .E|

†
n

] . (2)

A special case of a density matrix is a pure state |ψ〉, for which the
corresponding density matrix is constructed in the standard way: ρ = |ψ〉〈ψ|.
For each step of the evolution τ , there is in general a whole family of the
evolution operators E|(τ ; ν), whith ν describing uniquely the state ρ(τ, ν).

The projection operators may have different forms, for example a special
choice of the evolution generator leads to the Schrödinger evolution scheme.
An alternative form is the resolution of unity, in which case one has

(Hermitian) E|(τ ; ν)† = E|(τ ; ν) , (3)
(orthogonal) E|(τ ; ν)E|(τ ; ν ′) = δνν′E|(τ ; ν) , (4)

(resolution of unity)
∑
ν

E|(τ ; ν) = I , (5)

where I is the unit operator.
The main consequence of the projection evolution approach is that on the

quantum level, the evolution is not ordered by time t but by the parameter τ .
The density matrix ρ at each step of the evolution depends on the spacetime
coordinates. It means that the quantum object is always described in the
whole space and at all times. Therefore, the notions of past, present, and
future are not directly applicable, because each change of the state affects it
in the whole spacetime, including to certain extend its past and future, as
seen from the laboratory frame of reference. The connection of the quantum
system to the laboratory time t can be established by interactions of the
object with the macroscopic environment. Between the measurements, the
system evolves non-classically, but each interaction with the environment
changes the state and may be interpreted as a tick of a classical clock.

Another consequence is that zero-time events are not physical, so every
event should have some “width” ∆t along the time axis. It follows that for
a time operator which is canonically conjugated to the temporal component
of the four-momentum, the lower bound on the product (∆t)(∆p0) can be
established. The uncertainty relation between the energy and time can then
be formulated by using the equations of motion.

3. The temporal interference

In the project reported in Ref. [5], a modified version of the double-slit
experiment was conducted. A single photon source was used and the de-
tector registered the energy spectrum of the particles. A rotating wheel
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with slits was placed between the source and the detector. The speed of
the rotation was adjusted in such a way that the photon could have passed
at least two different slits in the wheel. The detector registered an energy
modulation in the form of an interference pattern. The most natural inter-
pretation of this observation is that the photon was in a superposition of
states, corresponding to passing different slits in different times, and that
these states interfered. This interpretation requires, however, the extension
of the traditional formalism to include time as an observable.

Let us build a description of a similar process on the example of a rela-
tivistic spin-zero particle. The rotating wheel is represented by a spacetime
region in which a single slit opens twice. When the slit is closed, the particle
is blocked and cannot reach the detector.

In the projection evolution, we have to start from the initial state of the
particle and construct operators which describe the passing of the slit, the
free propagation to the detector, and the detection process.

The emission of the particle does not happen in zero-time, which intro-
duces some spread in its energy. We assume that the emitted mass m0 is
distributed around some mean value m̄0

m0 ∈ ∆m̄0 =

[
m̄0 −

Γ

2
, m̄0 +

Γ

2

]
, (6)

where the mass spread Γ comes from the duration of the emission process
and the particle’s half-life. It follows that the particle’s four-momentum
must belong to the set Bm̄0 ,

k ∈ Bm̄0 ⇔
(
m̄0 −

Γ

2

)2

≤ k2 ≤
(
m̄0 +

Γ

2

)2

, (7)

with some distribution a(k). The simplest profile a(k) is rectangular, with
equal distribution of the momenta within the set Bm̄0 , but other choices are
also possible. The initial state of the particle is given by

|ψ0〉 =

∫
Bm̄0

d4k a(k)|k〉 , (8)

where 〈x|k〉 = exp(−ikµxµ)/(4π2). This state is unnormalized. In the
following, we skip the normalization, as it does not change qualitatively our
final result, but in principle a proper normalization should be done after
each step of the evolution.
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Let us denote by ∆T = ∆1 ∪∆2 the spacetime intervals which represent
the opened slit. The spatial parts of ∆1,2 are the same, but the temporal
parts differ. The passing of the slits is given by the evolution operator

E|S(τ1) =

∫
∆T

d4x |x〉〈x| , (9)

which projects the state onto the intervals ∆1,2. At this stage of the evolu-
tion, the state of the particle contains two parts, one projected onto ∆1 and
another projected onto ∆2.

The free propagation to the detector is just the Klein–Gordon condition,
i.e., we have to project the state onto correct four-momentum using the
operator

E|F(τ2) =

∫
Bm̄0

d4k′ |k′〉〈k′| . (10)

Finally, the detector measures the four-momentum κ of the incoming
particle, so the last evolution operator takes the form of

E|D(τ3) = |κ〉〈κ| . (11)

Taking all this into account, the evolution of the initial state is given by

E|D(τ3)E|F(τ2)E|S(τ1)|ψ0〉

= |κ〉
∫

Bm̄0

d4k′ δ4(κ− k′)
∫

Bm̄0

d4k a(k)

∫
∆T

d4x 〈κ|x〉〈x|k〉 . (12)

Due to the fact that ∆T = ∆1 ∪ ∆2, the integration over the spacetime
coordinates is∫

∆T

d4x 〈κ|x〉〈x|k〉 =

∫
∆1

d4x 〈κ|x〉〈x|k〉+

∫
∆2

d4x 〈κ|x〉〈x|k〉 . (13)

The probability that the detector registers a particle with the momentum κ
is given by ||E|D(τ3)E|F(τ2)E|S(τ1)|ψ0〉||2, which generates the temporal inter-
ference term between the ∆1 and the ∆2 parts.

4. Conclusions

Time on the quantum level is not the same as the macroscopic time.
This triggers the need of a proper extension of the traditional formulation of
quantum mechanics. We have presented the projection evolution approach
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in which the state at the previous step of the evolution is projected onto the
space of all possible new states. This mechanism is capable of recreating the
Schrödinger picture but is not limited to this particular choice only — the
discussed above resolution of unity being another example. In the projection
evolution approach, one treats the microscopic time as an observable and
a coordinate, for which a Hermitian operator may be constructed.

We have presented a theoretical description of the temporal version of the
double-slit experiment. The derived formula contains an interference term
for the time coordinate, which explains in a consistent way the outcome
of the experiment reported in Ref. [5]. This description falls outside the
traditional formulation of the quantum theory in which it is impossible to
discuss time as a physical observable.
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