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The elastic scattering of neutron on nuclei of actinide group has been
investigated. The real part of global optical potential has been used. An
algorithm based on direct discretization of a two-dimensional equation
is proposed for numerically solving the problem of scattering of axially-
symmetrical potential. It has been shown that including of non-spherical
form of nuclei gives a significant correction in the description of scattering.
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1. Introduction

The problem of scattering on an object without spherical symmetry is
usually solved numerically. Decomposition in spherical functions then loses
both physical and mathematical meaning, due to the nonconservation of an-
gular momentum in the process of scattering; i.e., the standard approach
using the amplitude representation in a clearly unitary form cannot be used.
The effective scheme of the solution has been used before for different prob-
lems [1–3]. In this work, the main parameters were taken for elastic neutron
scattering on 238−235U nuclei. This is known to be one of the well-deformed
nuclei and is well-suited for studying a non-spherical object of scattering.
The interaction between neutrons and these nuclei is a base of the atomic
energy.

Due to the characteristics of the research technique, only one aspect of
studying this reaction was examined: the difference between scattering in
the model of a non-spherical potential and the model of scattering on a
spherically symmetric potential. Note that examples of neutron scattering
by a non-spherical atomic nucleus or the problem of diffraction of composite
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particles [2, 3] do not diminish the relevance of the technique proposed here.
In this work, the problem is solved for particular cases using different ap-
proaches in theoretical physics, the physics of nanostructures, and in related
areas of chemistry, medicine, and atomic interferometry [4–8].

2. General idea of the numerical solution

For the problem of scattering of a spinless particle, we can write the
Schrödinger equation in the case of axial symmetry as

∆Ψ(r, ϑ, ϕ)− V (r, ϑ)Ψ(r, ϑ, ϕ) = −k2Ψ(r, ϑ, ϕ) , (1)
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Here, k2 = 2mE is the wave number, E is the energy of the system, and
Ψ(r, ϑ, ϕ) is the wave function. It should be noted that in this system of
units, Planck’s constant is equal to unity and energy is measured in units
of the inverse length squared. The potential is restricted within a certain
domain: V = 0 at r > rV .

It could be rewritten in the form:

∆mΨm(r, ϑ)− V (r, ϑ)Ψm(r, ϑ) = −k2Ψm(r, ϑ) , m = 0,±1,±2 . . . , (3)
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where Ψ(r, ϑ, ϕ) =
∑

m Ψm(r, ϑ)eimϕ. For scattering problem, if incoming
wave has a random wave number ~k, then

Ψ(r, ϑ, ϕ) = ei
~k~r + χ(r, ϑ, ϕ) = eikr cos ϑ̃ + χ(r, ϑ, ϕ) , (5)

and equations (3), (4) for χ(r, ϑ, ϕ) are

∆mχm(r, ϑ)− V (r, ϑ)χm(r, ϑ) = −k2χm(r, ϑ) + V (r, ϑ)Fm

(
r, ϑ, ϑ̃

)
, (6)

where Fm(r, ϑ, ϑ̃) =
∫ 2π
0 eikr cos ϑ̃eimϕdϕ.

The wave-function asymptotics is given by

Ψ (r, ϑ, ϕ)→ eikr cos ϑ̃ + f (ϑ, ϕ)
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and determines the scattering amplitude f(Ω) = f (ϑ, ϕ), which obeys op-
tical theorem [9]
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in coordinate system ϑ′, ϕ′, where direction of free incoming wave is equiv-
alent of the axe ϑ′ = 0. There, σ is the total cross section

σ =

∫
|f (Ω)|2 dΩ .

Expression (8) (i.e., the condition of the conservation of probability) can be
used as a criterion for the accuracy of the numerical solution of the problem.

The concept behind the technique is that when r > rV , there is a free so-
lution to Eqs. (1), (2) that can be conveniently represented as an expansion
in the Legendre polynomials Pml (cosϑ)

Ψ(r, ϑ) = exp(ikr cosϑ) +
∑
lm
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with unknown coeffients al. Here, h(1)l (kr) is a spherical Bessel function of
the third kind, expressed through a Hankel function of the first kind

h
(1)
l (kr) =

√
π

2kr
H

(1)
l+1/2 (kr) .

The choice of the radial solution in this functional form is determined
by the possibility of satisfying asymptotic condition (7), since

h
(1)
l (x)|x→∞ → (−i)l+1 exp(ix)

x
,

and function (9) has correct asymptotic form (7) with the amplitude

f(ϑ, ϕ) =
1

k

∑
l

al(2l + 1)Pml (cos(ϑ)) eimϕ , (10)

which is expressed through coefficients alm.
In practice, we search for unknown coefficients. After standard replace-

ment Ψ (r, ϑ, ϕ) = rΦ̃ (r, ϑ, ϕ) , separation of the incident and scattered waves
Φ̃ = Φ0 +Φ, and reducing the equation obtained from (4) to a discrete form
(at this stage, the algorithm is identical to the one in [3]), we use a matrix
sweep [10]. It is based on the linear relationship

Φj−1 = ZjΦj +Dj (11)

between matrix columns Φj = (Φ (rj , ϑ0) , Φ (rj , ϑ1) , . . . , Φ (rj , ϑnmax)), ϑn =
∆ϑn for any point rj = ∆rj . The matrix form of the discretized equation
with allowance for the boundary condition at r = 0 allows matrices Zj
and Dj be determined recursively for any rj . At boundary r = rmax > rV ,
relation (11) is transformed into the equation for unknown coefficients alm.
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3. Solution for uranium nuclei

Using a program that executes the specified algorithm, a model prob-
lem was solved that demonstrates the possible effects in scattering on a
non-spherical potential. The parameters of neutron scattering on the non-
spherical 235−238U nucleus were chosen as the initial data for the problem.
Two models were considered for comparison: Model 1, with the boundary of
a Woods–Saxon potential in the form of an ellipsoidal surface of revolution,
and Model 2, a spherically symmetrical potential. The interaction potential
of a neutron with a nucleus in Model 1 in spherical coordinates is written
as a function of rmod1, where

rmod1 =
b√

1− e2cos2ϑ
.

Parameters of the Woods–Saxon potential and the size of nuclei were found
from optical model [12]. The l–s-interaction has not been taken into account.
Parameters b, e were determined from the condition of the equality of volume
of the sphere and the ellipsoid. This corresponds to the incompressibility
of nuclear matter. In addition, the parameter of deformation was used to
determine b, e [11]: 1.06 (a− b)/R0 = β, β = 0.281, where a is a major
half-axis related to minor half-axis b through eccentricity e. The use of a
two-dimensional system of equations to determine θ̃ can be considered as
neutron scattering on spin-oriented targets. Asymptotic (9) has been used
for the case of θ̃ = 0 and for Model 1. For θ̃ 6= 0, the asymptotic form of (7)
has been used.

Of course, using the parameters of the interaction potential described
above the process of neutron scattering on uranium isotopes with a high de-
gree of conditionality because we do not include the Hamiltonian of the
nucleus, in which the angular part restores the conservation of angular
momentum. However, such a realistic problem can be described in five-
dimensional space using a minimal and greatly simplified formulation. The
use of two-dimensional scattering on a non-spherical nucleus is thus only
part of describing the complete scattering process with the possible transfer
of angular momentum to the uranium nucleus. Nevertheless, even such a
simplified analysis can show how much the deformation of the nucleus affects
the angular dependence of the scattering process.

In figure 1, the calculation for two different models has been shown.
The different angles ϑ̃ have been used. It seems that scattering at spherical
potential is very different than the one at potential of ellipsoid. Scattering
for all models is lower than for the optical model [12]. It could be explained
by the absence of l–s interaction.
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Fig. 1. Comparision of the different calculation model. ‘opt’ — calculation by
optical model from [12], ‘model 1.1–1.3’ — for angles ϑ̃ 0, π/4 and π/2, respectively.

Another point is a difference between possible averaged result of scat-
tering at non-spherical potential and the one at spherical potential. For
5–10 MeV, full averaged cross section of Model 1 will be more than cross
section of Model 2.

4. Conclusion

The program for calculating the cross sections of two-dimensional equa-
tions in spherical coordinates was modernized as a result of expanding the
solution according to free solutions. The modernization results in a consid-
erable saving of computer resources, a reduction in computation time, and
new ways of calculating the wave function in the region of the geometric
shadow.

The program was tested on an ellipsoidal Woods–Saxon potential of
the uranium nuclei. Calculations of neutron scattering differ considerably
from those of scattering in the model of a spherically symmetric potential.
Nucleon–nuclear spherically symmetric interaction thus cannot be used to
describe elastic neutron scattering on the uranium nucleus (for spin-oriented
targets) even as a first approximation.
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