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Using the Fourier shape parametrisation of deformed nuclei developed
by us recently, potential-energy landscapes for isotopes of nuclei between
platinium (Z = 78) and lead (Z = 82) are analysed in a 4-dimensional
deformation space, searching for local extrema, ridges and valleys. A cer-
tain number of yet unknown super- and hyper-deformed shape isomers in
even–even Pt, Hg and Pb isotopes are predicted. Quadrupole moments
in the relevant minima are evaluated. A nice agreement of the theoretical
predictions with the experimental ground-state data for these quantities
gives strong confidence on the quality of our results for the corresponding
isomeric states.
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1. Introduction

Potential energy surfaces (PES) describe the energy of nuclei as a func-
tion of some deformation parameters. In order to exploit in an optimal way
all the relevant deformation degrees of freedom, while keeping computation
time within reasonable limits, necessitates a clever way of parametrising
nuclear deformations, a shape parametrization that relies on only very few
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deformation parameters, but that allows, on the other hand, to control its
convergence. Such an analytical form should, if possible, be applicable in ad-
dition to all nuclear systems throughout the periodic table. With the Fourier
shape parametrization recently developed by us [1, 2], we are convinced to
have such a tool at hand. We have, indeed, shown [2–4] that with only 4
deformation parameters, corresponding to elongation, left–right (reflection)
asymmetry, neck formation, and non-axiality, we are able to describe or pre-
dict ground-state properties, as well as shape and fission isomeric states. We
have even been able to predict the mass partitioning in the fission process at
low excitation energy, and its evolution with proton and neutron number [2].

In what follows, we are going to exploit this powerful tool to scan these
4-dimensional deformation energy landscapes for a total of 66 isotopes of Pt,
Hg and Pb nuclei in order to localize ground states, local extrema, ridges
and valleys [4].

2. Results and discussion

The deformation-energy landscapes discussed below have been obtained
within the macroscopic–microscopic model using the Lublin–Strasbourg
Drop (LSD) [5] for the macroscopic part together with Strutinsky shell cor-
rections [6] and BCS pairing correlations [7] for the quantum mechanical
corrections, where a Yukawa-folded mean-field potential [8] has been used
to determine the single-particle energy spectrum for protons and neutrons.
For the description of nuclear deformations, the Fourier shape parametriza-
tion [1, 2] has been used, as already mentioned above, where it has been
shown [3, 4] that with only 4 deformation parameters q1–q4 correspond-
ing respectively to non-axiality, elongation, left–right asymmetry and neck
degree of freedom, one is able to describe any (non-pathological) nuclear
deformation from the oblate side up to the extreme deformations that occur
in the fission process close to the scission configuration [4]. A more detailed
description of the theoretical background of our calculations can be found
e.g. in Ref. [9].

We start by showing in Fig. 1 (left column) the energies relative to the
one of the (spherical) liquid-drop (LSD) minimum, for the ground state and
the two lowest energy shape isomers for the Pt, Hg and Pb isotopic chains.
Also shown (right column) are the charge quadrupole moments (absolute
values) for the three isotopic chains, which agree very nicely with the avail-
able experimental ground-state data [10]. On both quantities (energies and
quadrupole moments), the spherical N = 126 shell closure is clearly visible.
Notice, however, that for the Pt isotopic chain, no isotope has been syn-
thesized beyond 204Pt, i.e. beyond the N = 126 shell closure. Whereas at
shell closure the isotopes in the three chains are evidently spherical, they
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Fig. 1. Energy at the ground state and the first and second shape-isomers of Pt, Hg
and Pb isotopes (from top to bottom) relative to the spherical liquid-drop (LSD)
minimum (left column) and corresponding charge quadrupole moments |Qch

20| (right
column) as compared to the experimental data [10].

can be either prolate (corresponding to positive q2 values) or oblate (neg-
ative q2 values) as one goes away from the N = 126 magic number. This
is demonstrated in Figs. 2, 3 and 4 where the deformation of the different
isotopes in each of the three isotopic chains is indicated in the (q2, q4) de-
formation space, where, as mentioned above, q4 stands for the hexadecapole
(neck) degree of freedom. It should be made clear that the energies of the
nuclear ground state and the shape isomers in Fig. 1 are always obtained
by a minimisation in the above-introduced 4-dimensional deformation space,
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and that the ground-state deformations in the (q2, q4) space given in Fig.
2 result, as well, by a minimisation with respect to the two additional de-
formation parameters q1 and q3. Since the different shape isomers could be
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Fig. 2. Ground state, first and second isomer quadrupole q2, and hexadecapole q4
Fourier deformations of Pt isotopes.
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Fig. 3. Ground state, first and second isomer quadrupole q2, and hexadecapole q4
Fourier deformations of Hg isotopes.

quite close in energy, as this is already seen in Fig. 1, it can well happen
that shape isomer I (first in energy) and shape isomer II (second in energy)
change roles, or that another shape isomer comes down in energy to take the
place of either of the two. This would explain the sudden jumps that are ob-
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Fig. 4. Ground state, first and second isomer quadrupole q2, and hexadecapole q4
Fourier deformations of Pb isotopes.

served both in the right column of Fig. 1 and in Fig. 2, like when going from
174Pt to 176Pt where, obviously ground state (oblate in 174Pt but prolate in
176Pt) and shape isomer I (prolate in 174Pt but oblate in 176Pt) change roles.
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Due to the variation of shell and pairing effects, when going from one isotope
to the next, it can also easily happen that local minima in the deformation
energy landscape appear or disappear. In general, we have observed that the
energy landscape is rather soft in the lighter isotopes of the nuclei studied
here, while much more pronounced minima are observed in the heavier ones.
For the most deformed of these, it is certainly worth to study them in the
context of the debated existence of a second very elongated minimum in this
region of nuclei [11].

Till now, only the elongation q2 (quadrupole) and the neck q4 (hexade-
capole) degrees of freedom of our 4-dimensional deformation space have been
discussed and one necessarily will ask about the importance of left–right
asymmetry and non-axiality. It turns out, however, that all investigated
nuclei, without any exception, have been found to be left–right symmetric
(q3 = 0). All lead isotopes are, in addition, found to be axially symmetric.
When Pt and Hg isotopes are concerned, some of them exhibit non-vanishing
q1 values and, therefore, have some non-axial deformation. A close analysis
shows, however, that this non-axiality is, indeed, extremely small, as well
in the ground-state as in the shape-isomeric states. Translated into a (β, γ)
deformation space (see e.g. Ref. [9] for a comparison of the (q2, q1) and the
(β, γ) deformation spaces), the observed here non-axiality deformation pa-
rameters q1 would correspond to a non-axiality parameters γ only a couple
of degrees away from either the prolate or the oblate axis, so that one could
safely say that also these isotopes are practically axially symmetric.

3. Summary

Potential-energy landscapes have been computed within the macroscopic–
microscopic approach and the new Fourier shape parametrization for 66
even–even isotopes of the Pt, Hg and Pb nuclei, locating local minima in
the 4-dimensional deformation space. Ground state and the two first iso-
meric states closest in energy to it are identified. We have shown that a
clever choice of the Fourier deformation parameters [2] yields, indeed, a very
rapidly converging expression for the nuclear deformation. We have thus
identified several shape isomeric states and their evolution with Z and N
that, according to our preliminary investigation, match the experimental
data where available [12]. Predictions for moments of inertia and rotational
energies in these local minima are currently determined and will be presented
in a forthcoming publication. Our present study should be understood as
a pilot investigation, aimed at demonstrating the potential power of our
approach. More detailed quantitative investigations are in progress.
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