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We develop a novel theoretical method for calculating spectroscopic
properties of those nuclei with odd number of nucleons that is based on the
nuclear density functional theory and the particle–boson coupling scheme.
A self-consistent mean-field calculation based on the DFT is performed
to provide microscopic inputs to build the Hamiltonian of the interacting
boson–fermion systems, which gives excitation spectra and transition rates
of odd-mass nuclei. The method is successfully applied to identify the
quantum shape phase transitions and the role of octupole correlations in
odd-mass nuclei, and is further extended to odd–odd nuclear systems.
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1. Introduction

Microscopic description of the low-lying states in those nuclei with odd
numbers of nucleons is one of the challenging problems in nuclear structure
physics. Primary reason is that, as compare to the even–even nuclei where
nucleons are coupled pairwise and they determine to a large extent the low-
lying nuclear structure, in the odd-A and odd–odd nuclei, one has to consider
both the single-particle (unpaired nucleon) and collective degrees of freedom
on the same footing.

Here, we specially focus on a recently developed theoretical method [1] for
calculating spectroscopic properties of the odd nuclei that is based on the nu-
clear energy density functional theory (DFT) [2, 3] and the particle–(boson-)
core coupling scheme. In this framework, the constrained self-consistent
mean-field (SCMF) calculation based on the nuclear DFT is performed to
compute potential energy surface (PES) in the relevant collective coordinates
for the even–even core nucleus, and the spherical single-particle energies and
occupation probabilities of odd particles. These quantities are used as a mi-
croscopical input to build the interacting boson–fermion model (IBFM) [4]
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Hamiltonian. At the cost of having to determine a few coupling constants for
the boson–fermion interaction empirically, this method has allowed for a de-
tailed, systematic, and computationally feasible description of spectroscopy
of those nuclei with odd nucleon numbers. Here, the recent applications of
this method are highlighted, i.e., the effect of an odd particle on the na-
ture of quantum shape phase transitions [5], the octupole correlations in
odd-A neutron-rich nuclei [6], and the extension of the method to odd–odd
nuclei [7].

2. Theoretical framework

The IBFM for a given odd-A system consists of the interacting boson
model (IBM) [8] Hamiltonian ĤB for the even–even core nucleus, single-
particle (either neutron ρ = ν or proton π) Hamiltonian Ĥρ

F , and the inter-
action Ĥρ

BF between the odd neutron (proton) and the boson core

ĤIBFM = ĤB + Ĥν
F + Ĥπ

F + Ĥν
BF + Ĥπ

BF . (1)

The IBM Hamiltonian is typically of the form of

ĤB = ε(n̂dν + n̂dπ) + κQ̂χν
ν · Q̂χπ

π + κ′L̂ · L̂ , (2)

where the first and second terms are the d-boson number operator and
quadrupole–quadrupole interaction between the neutron and proton bosons,
respectively, and the third term is the rotational term. The strength pa-
rameters ε, κ, χν , and χπ are determined by following the procedure of
Ref. [9]: the total mean-field energy obtained from the EDF calculation at
each (β, γ) deformation, i.e., EEDF(β, γ), is equated to the expectation value
of the IBM Hamiltonian in the intrinsic wave function for the boson system
at the corresponding configuration, EIBM(β, γ). Only the parameter κ′ for
the rotational term is determined separately from the other parameters, in
such a way that the SCMF cranking moment of inertia at the equilibrium
minimum, be equal to the IBM counterpart [10].

Additional microscopic inputs from the DFT are the single-particle en-
ergies εjρ (for Ĥρ

F ) and occupation probabilities v2jρ (for Ĥρ
BF ) for the odd

nucleon at the orbital jρ. These quantities are obtained from the SCMF
calculation at zero deformation and the particle number of either neutrons
or protons constrained to odd number [1]. The boson–fermion interaction
Ĥρ
BF is composed of the three essential terms, i.e., dynamical quadrupole,

exchange, and monopole terms [4]. Hence, there are three strength parame-
ters for Ĥρ

BF for odd-N or odd-Z system. They are the only phenomenologi-
cal parameters and are fixed so as to reasonably reproduce the experimental
low-lying levels for each odd-A nucleus. For the detailed account of the
whole procedure, the reader is referred to Ref. [1].
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3. Signatures of quantum phase transitions in odd-A nuclei

Even–even Sm isotopes are a well-known example where the phase tran-
sition from spherical vibrational to deformed rotational states is suggested
to occur by addition/subtraction of only a few nucleons [11]. The triaxial
quadrupole (β, γ) PESs for a set of Sm isotopes are depicted in Fig. 1, which
are obtained by the constrained relativistic Hartree–Bogoliubov (RHB)
method [3] with the DD-PC1 EDF [12]. One sees near-spherical minimum

Fig. 1. Potential energy surfaces for the Sm isotopes computed with the constrained
RHB method [3] using the DD-PC1 EDF [12]. Energy difference between neigh-
boring contours is 250 keV.

at 148Sm, which is typical of the vibrational nucleus. For 150,152Sm, the
minimum becomes soft both in β and γ deformations, and these nuclei are
supposed to be the transitional nuclei. A distinct prolate minimum is seen
in 154Sm, indicating that the deformed rotational structure appears. Fig-
ure 2 depicts the excitation spectra for the low-lying states of the odd-A
63Eu and 62Sm isotopes resulting from the IBFM Hamiltonian. Our calcu-
lation reproduces the experimental spectra quite nicely, even though there
are only three free parameters. A signature of the nuclear structure evolu-
tion is identified in the change of the ground-state spin at N ≈ 90. Around
this neutron number, the corresponding even–even system undergoes a rapid
shape transition. We have further computed several mean-field and spec-
troscopic properties for the odd-A systems, that can be considered order
parameters for the phase transition: β (average β deformation), ∆β (vari-
ance of β), B(E2) (average B(E2) value between the band-head of a given
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Fig. 2. Excitation spectra for the low-lying positive- (π = +1) and negative-parity
(π = −1) states for the odd-A Eu and Sm isotopes.

band with spin J0 and the lowest five states with J0 +∆J , with ∆ = 1, 2),
E(J1, J0) (energy of the first excited state J1 in a given band with respect
to the band-head J0), and R(J2, J1, J0) (energy ratio of the second J2 to
first J1 excited states with respect to the band-head J0 in a given band).
Figure 3 depicts the differentials of these quantities between the neighboring
isotopes, δO =

∑n
i |Oi,A − Oi,(A−2)|/n, which is averaged over the lowest

n(≈ 5) bands. One realizes, in most of these calculated quantities, a kink
around N ≈ 90 that can be considered a signature of phase transition.
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Fig. 3. Differentials of several calculated mean-field and spectroscopic properties of
the odd-A Eu and Sm for both parities.

4. Octupole correlations in neutron-rich odd-A nuclei

Octupole degree of freedom is expected to play an important role in sev-
eral specific mass regions. Figure 4 depicts the axially-symmetric quadrupole
β20–octupole β30 PESs for 140−150Ba, where the octupole correlation is sug-
gested to be particularly relevant. The PESs indicate pronounced octupole
deformation with the non-zero β30 value for 144−150Ba. For studying the
octupole collective states, we included the negative-parity f bosons with
Lπ = 3− in the IBM space, in addition to the positive-parity s (Lπ = 0+)
and d (Lπ = 2+) bosons. The sdf -IBM Hamiltonian is fixed by mapping
the (β20, β30) SCMF PES onto the bosonic one. As for the odd-A Ba, we
have implemented the f -boson degrees of freedom in the IBFM [6], and the
sdf -IBFM Hamiltonian has been fixed by a similar procedure to the one
in the case of sd-IBFM. The resultant sdf -IBM and sdf -IBFM spectra for
even–even 144Ba and odd-A 145Ba are compared to the experimental counter-
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Fig. 4. Axially-symmetric (β20, β30) PESs for the 140−150Ba isotopes, computed
with the RHB method with DD-PC1 EDF.

parts in Fig. 5. Our calculation describes very nicely the experimental data
[13] for the excitation spectra and B(E3) transition rates in the even–even
144Ba nucleus. For the odd-A 145Ba nucleus, the band-head energies of those
bands that are empirically suggested [14] to be the octupole bands (shown
in thick lines in Fig. 5) are reproduced by the calculation (the corresponding
theoretical bands composed of one-f -boson configuration are indicated also
as thick lines in the figure). We have also predicted the B(E3) values to
be approximately 20–30 W.u., for the transitions from the octupole to the
ground state bands in odd-A Ba, which are comparable to the calculated
B(E3; 3−1 → 0+1 ) = 23 W.u. for the even–even neighbor.
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Fig. 5. Low-energy level schemes for 144Ba and 145Ba.
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5. Odd–odd nuclei

In the cases of odd–odd systems, one single neutron and one single pro-
ton degrees of freedom are explicitly considered in the framework of the
interacting boson–fermion–fermion model (IBFFM) [4]. The coupling con-
stants of the interactions between single neutron (proton) to the boson space
are fixed to reproduce low-energy levels of the neighboring odd-N (odd-Z)
nucleus, using the prescription mentioned in Sec. 2. Furthermore, the resid-
ual neutron–proton interaction should be considered, and the parameters
for the interaction are determined so as to reasonably reproduce the lowest-
lying levels in the odd–odd nucleus [7]. As an example, we show in Fig. 6
the IBFFM spectra for the odd–odd nuclei 194,196Au. Microscopic inputs
have been provided by the Gogny-EDF SCMF calculation. The even–even
core 194,196Hg isotopes exhibit weakly deformed oblate shapes in the Gogny
PESs. The description of the excitation spectra for the considered odd–odd
nuclei is fairly good. Their electromagnetic properties have been also de-
scribed reasonably well [7]. We also mention another relevant application
of the EDF-based IBFFM calculation of Ref. [15], where we explored chiral
band structure in a number of odd–odd Cs isotopes, that is mainly composed
of the (νh11/2)

−1⊗πh11/2 neutron–proton pairs coupled to γ-soft even–even
Xe cores.
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Fig. 6. Low-energy excitation spectra for the odd–odd nuclei 194,196Au.

6. Conclusions

We introduced a recently developed theoretical method for calculating
spectroscopic properties of those nuclei with odd nucleon numbers that is
based on the nuclear DFT and the particle–boson coupling scheme. The
boson-core Hamiltonian, and the spherical single-particle energies and oc-
cupation probabilities of the odd nucleons are determined from fully mi-
croscopic SCMF calculations, whereas there are only a few free parameters
that are fixed empirically. Successful applications of the employed theoret-
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ical method to study the shape QPT and octupole correlations in odd-A
systems, and the structure of odd–odd nuclei (as well as other examples
not covered in this contribution) indicate that the method is promising for
studying spectroscopic properties of even–even, odd-A, and odd–odd nuclear
systems in a systematic and computationally feasible way.

The results presented in this contribution are based on the works with
D. Vretenar, T. Nikšić, L.M. Robledo, and R. Rodríguez-Guzmán. This
work is financed within the Tenure Track Pilot Programme of the Croatian
Science Foundation, the École Polytechnique Fédérale de Lausanne and the
Project TTP-2018-07-3554 Exotic Nuclear Structure and Dynamics, with
funds of the Croatian–Swiss Research Programme.
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