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Attempts are discussed to derive covariant density functionals ab initio,
i.e. from the bare nucleon–nucleon forces. They are based on the Relativis-
tic Brueckner–Hartree–Fock (RBHF) theory which, in most cases, has been
applied for nuclear matter. For semi-microscopic functionals, such calcu-
lations are used to derive the density dependence of the parameters. In
this way, only very few phenomenological parameters are left for the fine
tuning. The RBHF calculations in finite nuclear systems are used to obtain
additional formation as, for instance, the strength of effective tensor forces,
which are difficult to obtain in a phenomenological way from the data.
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1. Introduction

Considerable progress has been achieved in recent years in ab initio
derivations of nuclear properties from bare nucleon–nucleon forces. Nowa-
days, it is possible to solve the exact nuclear many-body problem for light
nuclei on the computer. For heavier nuclei, approximate methods have been
applied successfully. The investigation of nuclear properties for the major-
ity of nuclear systems, however, is left to density functional methods. Non-
relativistic [1, 2] and relativistic [3–7] versions allow an effective description
of the nuclear many-body problem not only for ground-state properties, but
also for excitations such as collective rotations and giant resonances and, by
going beyond mean field, for sophisticated low-lying spectra in transitional
nuclei [8, 9] and the coupling to complicated configurations [10]. At present,
most of these functionals are purely phenomenological. Of course, one of
the main goals in nuclear physics is to build a universal density functional
theory based on microscopic calculations [11, 12], a goal which has been
reached since many years in Coulombic systems. This functional should be
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able to explain as many data as possible within the same parameter set and
to provide reliable predictions for nuclei far from stability not yet or never
accessible to experiments in the laboratory. It should be derived in a fully
microscopic way from the interactions between bare nucleons. At present,
however, such attempts provide only qualitative results for two reasons: first,
the three-body term of the bare interaction is not known well enough and,
second, the methods to derive such a functional are not sufficiently precise
to achieve the required accuracy.

Symmetries play an essential role in the derivation of energy density func-
tionals. One of the underlying symmetries of QCD is the Lorentz invariance
and, therefore, covariant density functionals are of particular interest in nu-
clear physics. This symmetry not only allows to describe, in a consistent
way, the spin–orbit coupling, which has an essential influence on the under-
lying shell structure, but it also puts stringent restrictions on the number
of parameters in the corresponding functionals without reducing the quality
of the agreement with experimental data. It is true that the velocities of
nucleons in the Fermi sea are relatively small. As sumrule approximations
of QCD predict [13], there are large scalar and vector fields of opposite sign
in the nuclear medium. Since the fifties, one knows [14] that they cancel in
the average field, but they add up in the velocity-dependent spin–orbit term,
such that even small velocities lead to large effects, which cannot be treated
by perturbation theory. Of course, a non-relativistic expansion is possible,
but it leads to various large correction terms at the cost of additional phe-
nomenological parameters as the spin–orbit term in non-relativistic density
functionals. Therefore, we restrict ourselves in the following to the Covariant
Density Functionals Theory (CDFT).

2. Semi-microscopic density functionals

In Coulombic systems, an essential input for the derivation of micro-
scopic functionals is the exact numerical solution of the homogeneous elec-
tron gas at various densities. Starting from this energy functional E∞[ρ],
additional gradient terms and many other corrections have been added with
great success. Therefore, it seems to be reasonable to apply a similar concept
in nuclear physics [15]. Of course, at present, there are no exact solutions
for homogeneous nuclear matter available. One has to rely on approxi-
mate solutions, such as sophisticated variational calculations [16] or modern
Brueckner–Hartree–Fock methods [17, 18]. The point coupling functional
DD-PC1 of the Munich–Zagreb group [19] used this microscopic input to-
gether with experimental masses of 64 heavy deformed nuclei in order to
adjust 10 phenomenological parameters, the four coupling constants αS, αV,
αST, δS at saturation and six further parameters to describe the density de-
pendence. The result is a semi-microscopic functional with an EoS nearly
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identical to the microscopic EoS of the Illinois group [16] which can be used
at higher densities in neutron stars with much more confidence than the
extrapolations of phenomenological functionals adjusted only at saturation
density and below. To reduce the number of phenomenological parame-
ters, in analogy to the non-relativistic considerations of the Catania group
[20], we went a step further and derived a semi-phenomenological relativis-
tic functional DD-MEδ [21]. In contrast to the phenomenological covariant
density functionals, where the isospin dependence is completely determined
by the vector ρ-meson, microscopic Dirac–Brueckner–Hartree–Fock (DBHF)
calculations [18] show clearly that there is also an isospin dependence in the
scalar channel described by the isovector δ-meson (sometimes called a0). We
derived the four density-dependent parameters gσ(ρ), gω(ρ), gρ(ρ), and gδ(ρ)
from ab initio calculations for nuclear matter (see Fig. 1). In addition, four
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Fig. 1. (Color online) Binding energy per nucleon E/A for symmetric nuclear mat-
ter and for neutron matter (left panel), and proton–neutron effective mass differ-
ence as a function of the nucleon density in pure neutron matter (right panel). The
dots represent the results of BHF [17] and RBHF [18, 22] calculations. The lines
correspond to DD-MEδ. Figure taken from Ref. [21].

phenomenological parameters gσ(ρsat), gω(ρsat), gρ(ρsat), and δS where fit-
ted to a set of spherical finite nuclei. This corresponds only to a fine-tuning
of the values gσ(ρ), gω(ρ), gρ(ρ). In fact, such a fine-tuning will always be
necessary for microscopic nuclear energy density functionals, as we see in Ta-
ble I, where the various contributions to the total energy of 208Pb are given
for the functionals DD-MEδ and DD-PC1. The scalar energy ES of roughly
30 GeV is compensated to a large extent by the vector energy EV and by
the kinetic energy. The total binding energy Etot of roughly 1.638 GeV rep-
resents only ≈ 5% of the scalar energy. As a consequence, in order to reach
an accuracy of 100 keV, as it is required for some astrophysical applications,
one needs an accuracy of 0.1/30000 ≈ 3× 10−6. This will never be reached
in ab initio calculations.
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TABLE I

Contributions to the total energy Etot for 208Pb in GeV, the scalar part ES, the
vector part EV, the Coulomb energy EC, the kinetic energy Ekin, and the center-
of-mass correction ECM. Columns 3 and 6 give the percentages of these values
in terms of ES, the 4th and 7th columns show the isovector contributions to ES

and EV.

208Pb DD-MEδ [21] DD-PC1 [19]

T = 1 T = 1

ES −30.014 100.00% −0.173 −31.811 100.00% 0
EV +24.642 82.10% +0.275 +26.638 83.70% +0.097
EC +0.828 0.28% +0.828 0.26%
Ekin +2.916 9.71% +2.710 8.52%
ECM −0.006 −0.006
Etot −1.633 5.44% −1.641 5.16%
∆E −0.004 −0.003

A systematic investigation over the entire nuclear chart in Ref. [23] has
shown that the semi-microscopic functional DD-MEδ has very similar prop-
erties as DD-MEδ. This is a remarkable result, because as compared to
DD-ME2 with 8, DD-MEδ has only 4 phenomenological parameters. The
rest is determined ab initio, i.e. by the bare nucleon–nucleon force through
the relativistic and non-relativistic Brueckner–Hartree–Fock theory.

3. Microscopic density functionals for finite systems

The form of the semi-microscopic density functionals discussed in the
last section is based on the Walecka model [24], where exchange terms are
neglected. Therefore, these functionals do not contain tensor terms. On
the other hand, it is well known that tensor terms play an important role
in systems, which are not spin-saturated [25]. It is clearly seen that they
have an influence on single-particle energies and on the spin–orbit splitting
in such systems. In fact, pure mean field models, without tensor terms are
not able to reproduce recent experimental data in Ref. [26] on the change
of single-particle splittings along the Sb-isotopes. Using the Relativistic
Hartree–Fock (RHF) theory, tensor forces can be included in CDFT-models
based on the RHF theory [27–29]. However, it is very difficult to fit the
corresponding parameters, because experimental single-particle energies are
not only influenced by tensor forces, but also by correlations beyond mean
field as, for instance, by the coupling to complex configurations [30, 31].
In addition, RHF calculations with finite range forces require tremendous
numerical efforts and are, up to now, practically restricted to spherical or
rather light axially deformed nuclei.
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Therefore, to determine the strength of effective tensor forces in covari-
ant density functionals, it has been proposed to carry out relativistic ab
initio calculations in the framework of the relativistic Brueckner–Hartree–
Fock theory [32]. The BHF theory is the mother of nuclear density functional
theory in the early seventies. At that time, the non-relativistic BHF theory
failed to reproduce the saturation properties of nuclear matter [33] due to
the missing three-body forces. However, it turned out to be very successful
to replace the microscopically determined G-matrix by a phenomenological
density-dependent interaction [1]. In the eighties, it has been found that the
saturation properties of nuclear matter can be reproduced by the RBHF the-
ory [34–37]. An important part of the effective three-body forces in nuclear
matter [38], the relativistic Z-diagram [39], is included in such calculations.

There are many approximate applications of the RBHF theory for finite
nuclei [22, 40–43]. All of them are based on the solution of the RHBF equa-
tions in nuclear matter and the local density approximation. These results
are used to adjust the parameters of relativistic Lagrangians, which are ap-
plied for calculations for finite nuclei in the framework of the relativistic
Hartree (RH) or the relativistic Hartree–Fock (RHF) approximation. Since
infinite nuclear matter is a spin-saturated system, none of these calculations
allows to adjust the strength of effective tensor forces for applications in
finite nuclei. This information can only be obtained by relativistic ab initio
calculations in finite systems.

The RBHF equations for finite nuclear systems have the following form:
using the Thompson choice, we start with the relativistic Bethe–Goldstone
(RBG) equation

〈
a′b′|Ḡ(W )|ab

〉
=
〈
a′b′|V̄ |ab

〉
+
∑
c<d

〈
a′b′|V̄ |cd

〉 Q(c, d)

W − ec − ed
〈cd|Ḡ(W )|ab〉

(1)
for finite systems. Here, the quantum numbers a, b, c, . . . characterize single-
particle states, which are the self-consistent solutions of the RHF equa-
tion (2)

(T + U)|k〉 = ek|k〉 . (2)

Q is defined as the Pauli operator: Q(c, d) = 1 for ec > eF and ed > eF
and Q(c, d) = 0 for all other cases. The single-particle states |k〉 are Dirac
spinors with large and small components. They are expanded in terms of a
complete Dirac–Woods–Saxon basis [44] containing solutions with positive
and negative energies. T is the kinetic energy and the RBHF potential U is
given by
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〈a|U |b〉 =



1
2

A∑
c=1
〈ac|Ḡ(ea + ec) + Ḡ(eb + ec)|bc〉 , ea, eb ≤ eF ,

A∑
c=1
〈ac|Ḡ(ea + ec)|bc〉 , ea ≤ eF, eb > eF ,

A∑
c=1
〈ac|Ḡ(e′ + ec)|bc〉 , ea, eb > eF ,

(3)
where eF is the Fermi energy. The choice of e′ and further details are dis-
cussed in Refs. [45, 46]. This system of RBHF equations (1), (2) and (3) has
to be solved iteratively.

The potential V in the BGE (1) is a relativistic bare nucleon–nucleon
interaction. We use the Bonn potential [47]. The very repulsive character of
the bare force at short distances causes a scattering of the occupied states up
to very high momenta. This leads to the inversion of rather large matrices
and to considerable computer time for the self-consistent solution of the sys-
tem of RBHF equations. Therefore, at present, one is restricted to spherical
nuclei with A ≤ 48. In Table II, we show the results for the nucleus 16O and
compare them with the experiment and with other calculations, i.e. with
the phenomenological RHF models (DDRHF), where the parameters of the

TABLE II

Total energy, charge radius, matter radius, and π1p spin–orbit splitting of 16O cal-
culated by RBHF theory [45, 46] with the interactions Bonn A, B, and C, in com-
parison with experimental data [48–51]. The corresponding results from DDRHF
with effective interactions PKO1 [52] and PKA1 [28], non-relativistic BHF [53]
with Vlow-k derived from Argonne v18, CC method [54], IM-SRG [55], NCSM [56],
and SCGF method [57] with N3LO, NLEFT [58] with N2LO, and QMC method
[59] with local chiral force N2LO are also included.

E [MeV] rc [fm] rm [fm] ∆Elsπ1p [MeV]

Exp. −127.6 2.70 2.54(2) 6.3
RBHF, Bonn A −120.2 2.53 2.39 5.3
RBHF, Bonn B −107.1 2.59 2.45 4.5
RBHF, Bonn C −98.0 2.64 2.50 3.9
DDRHF, PKO1 −128.3 2.68 2.54 6.4
DDRHF, PKA1 −127.0 2.80 2.67 6.0
BHF, AV18 −134.2 1.95 13.0
CC, N3LO −120.9 2.30
IM-SRG, N3LO −122.8
NCSM, N3LO −119.7(6)
SCGF, N3LO −122
NLEFT, N2LO −121.4(5)
QMC, N2LO −87 2.76
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Lagrangian have been adjusted, with non-relativistic BHF results, and with
the results of various non-relativistic ab initio calculations. As compared to
the experimental values, the RBHF results for the potential Bonn A show
an underbinding of 5.8% and too small radii by roughly 5.9%. Of course,
the results for the phenomenological models show perfect agreement, but
the non-relativistic BHF calculations show an overbinding of 5.2% and too
large radii by roughly 20%. For the other non-relativistic ab initio calcula-
tions, only binding energies are given in most cases and they are in rough
agreement with the RBHF results, but it is known that the radii are usually
20% too small [60].

Neutron drops in an external field of oscillator shape have been inves-
tigated in Ref. [61] within the RHBF theory. It has been found that the
tensor force produces a very specific pattern of the spin–orbit splitting for
the various orbits in these systems. As expected, it is not reproduced by
any of the usual CDFT functionals based on the relativistic Hartree approx-
imation, but it is reproduced qualitatively by the RHF functional PKO1
which contains a tensor term. However, the strength of this term in PKO1
is somewhat too small. These investigations indicate that meta-data as the
spin–orbit splittings in neutron drops can be used to adjust the strength of
the tensor force in future functionals from ab initio calculations. Recently,
this idea has been used in the non-relativistic case for the adjustment of
the tensor force in the Skyrme functional Sami-T [62]. Investigations for
relativistic density functionals are in progress.

4. Conclusions and outlook

We discussed recent attempts to derive covariant density functionals in
a microscopic way from ab initio calculations. It is emphasized that, due
to the large cancellation between the attractive scalar and repulsive vector
components of the force, it will never be possible to reach in this way the
required accuracy and a final fine tuning of a few parameters will always be
necessary. On the other hand, the relativistic Brueckner–Hartree–Fock cal-
culations in nuclear matter and in finite nuclei open new and very promising
ways to determine the general structure and specific details of such function-
als from the nucleon–nucleon scattering data. An example is the strength of
tensor forces, which can be adjusted to the spin–orbit splittings in neutron
droplets. Further examples could be the surface terms of such function-
als, which, possibly could be determined by the RBFH calculations for half
infinite nuclear matter.
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