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The Generating Coordinate Method applied to the description of the
collective quadrupole states of both the even- and the odd-particle nuclei
is resumed. The five laboratory components of the spherical quadrupole
tensor are taken as the generator coordinates. Use of the method for the
even and the odd systems is confronted with regard to the conservation of
the time-reversal symmetry. The adiabatic approximation for the overlaps
of the generating functions in the case of systems with the conserved and
the broken time-reversal symmetry is formulated. In that approximation,
the Hill–Wheeler equations can be substituted by the one second-order dif-
ferential equation in the case of the time-even nuclei, and by the system
of the two coupled second-order differential equations in the case of those
with the broken time-reversal symmetry. In the former case, the new for-
mulae for the weight, the inertial functions and moments of inertia, and
the potential of the Bohr Hamiltonian were obtained. In the latter one, the
new approach to the description of the collective quadrupole states of the
odd nuclei was formulated.
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1. Introduction

The original idea of the Bohr Hamiltonian comes obviously from the
classical physics. The multipole vibrations of the spherical drop of incom-
pressible liquid [1] were prototypes for the nuclear collective excitations. The
quantum description of nuclear collective states was initiated by Bohr [2] who
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quantized the Rayleigh liquid-drop vibrations. The original Bohr Hamilto-
nian was simply the harmonic oscillator. It initiated the era of the collective-
Hamiltonian models for various types of nuclei. Here, we shall not be inter-
ested in the phenomenological models for the collective Hamiltonians. We
are going to discuss the derivations of the Bohr Hamiltonian from micro-
scopic many-body theories. The method of derivation, which is used up
to now, was proposed by Belyaev [3] and, independently, by Kumar and
Baranger [4]. The method have consisted in the construction of the gen-
eral, five-dimensional (in the case of the quadrupole coordinates) classical
Hamiltonian with the coordinate-dependent mass parameters. The all func-
tions of coordinates, which define the Hamiltonian, have been extracted from
the given microscopic theory using the Adiabatic Time Dependent Hartree–
Fock(–Bogolyubov)-type of method (ATDHFB). Finally, the Hamiltonian
has been quantized by the Podolsky–Pauli prescription [5–7] and used in
the following form:

H(α) = − 1

2
√
B(α)

∂

∂αµ

√
B(α)B−1µν (α)

∂

∂αν
+ V (α) , (1.1)

where α is the tensor of the collective coordinates, Bµν is the inertial biten-
sor and B is the determinant of it. (The summation convention for the
upper and lower indices is used throughout the paper.) Different micro-
scopic theories are applied to the description of the collective states. How-
ever, the quasi-classical method of construction of the Hamiltonian is still
used. Needless to say that the Bohr–Hamiltonian approach applies to the
even–even nuclear systems only.

Yet, it turns out that a pure quantum procedure can be given which leads
to the differential eigenvalue equation for the collective states, that is to say,
to the Bohr Hamiltonian. It is already formulated [8, 9] but not very well
known and still does not applied to calculations of collective states. There-
fore, the method will be recapitulated here with paying the special attention
to its quantum nature, and to similarities and differences between the even
and the odd nuclear systems. Maybe, the present paper will contribute to
popularization of the approach.

2. Generating the quadrupole collective states

Let a nuclear system be described by the microscopic many-body Hamil-
tonian Ĥ, which is supposed to be invariant under the time reversal T̂ and
rotations R̂(ω) in the physical three-dimensional space. The simplest and
the best known approximations of the many-body Hamiltonian are these of
the mean-field type. The variational Generator Coordinate Method (GCM)
will be used to generate the collective states from the constraint mean-field
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eigenstates |φ(q)〉 called the intrinsic states. The tacit assumption is that we
deal with the ground states. For the collective quadrupole states, the con-
straint is the condition that the two intrinsic components of the ground-state
mass quadrupole moment take the given values q = (q0, q2). The intrinsic
components of the quadrupole moment together with the three Euler angles
ω = (ϕ, ϑ, ψ) of the orientation of the intrisic axes (principal axes of the
quadrupole moment tensor) with respect to the laboratory frame will be
used as the generator coordinates. Instead, it is more convenient to use the
five laboratory components αµ(ω, q) (αµ = (−1)µα−µ) of the quadrupole
tensor α. The states |φ(q)〉 rotated to the laboratory frame, namely

|Φ(α)〉 = R̂(ω)|φ(q)〉 (2.1)

will serve as the generating states. It could seem that the method applies
to the nuclear systems with an arbitrary number of the (quasi-)particles.
However, it is not so, because the intrinsic states |φ(q)〉 for the even and the
odd number of particles have some different features.

The intrinsic state |φ(q)〉 ≡ |φe(q)〉 of the even systems is invariant under
the time reversal and we have

T̂ |φe(q)〉 = |φe(q)〉 . (2.2)

In consequence, the matrix elements of the Hermitian operators between
both the intrinsic and the laboratory states are real and symmetric.

The intrisic states of odd systems, |φ(q)〉 ≡ |φo(q)〉 appear in the degen-
erate Kramers doublets, time-reversed to one another, |φo(q)〉 and |φ̄o(q)〉,
such that ∣∣φ̄o(q)〉 = T̂ |φo(q)〉 (2.3)

which means that the time-reversal symmetry is broken. We construct them
in such a way that they are both eigenstates of the T -signature, R̂Ty with the
eigenvalue equal to 1. Both states in the Kramers doublet, rotated to the
laboratory frame, have to be treated as the generating states. The matrix
elements between these states are complex in general.

The trial states in the GCM for the even and the odd systems should
be obviously different. The trial state for the even nuclei is assumed in the
following form:

|Ψe[ϕ]〉 =

∫
ϕ(α)|Φe(α)〉dΩ(α) , (2.4)

where ϕ(α) is the weight function. The variational principle leads to the
Hill–Wheeler integral equation [10] of the form of∫ [

He

(
α,α′

)
− EIe

(
α,α′

)]
ϕ
(
α′
)

dΩ
(
α′
)

= 0 , (2.5)
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where the overlap and the energy kernels are the following:

Ie
(
α,α′

)
=
〈
Φe (α)

∣∣Φe

(
α′
)〉

(2.6)

and
He

(
α,α′

)
=
〈
Φe(α)

∣∣Ĥ|Φe

(
α′
)〉

, (2.7)

respectively. Both kernels are real symmetric.
The case of the odd systems is more complicated. The trial state is a

functional of the two weight functions, namely

|Ψo[ϕ, ϕ̄]〉 =

∫ [
ϕ(α) |Φo(α)〉+ ϕ̄(α)

∣∣Φ̄o(α)
〉]

dΩ(α) . (2.8)

In consequence, the variational principle leads to the two coupled integral
equations of the following form:∫ [(

Ho(α,α
′), −H̄o

∗
(α,α′)

H̄o(α,α
′), H∗o(α,α′)

)
−E

(
Io(α,α′), −Īo∗(α,α′)
Īo(α,α′), I∗o (α,α′)

)](
ϕ(α′)
ϕ̄(α′)

)
dΩ(α′) = 0 , (2.9)

where the twinned and mixed overlap and energy kernels are the following:

Io
(
α,α′

)
=
〈
Φo(α)

∣∣Φo

(
α′
)〉
, Īo

(
α,α′

)
=
〈
Φ̄o(α)

∣∣Φo

(
α′
)〉
, (2.10)

and

Ho

(
α,α′

)
=
〈
Φo(α)

∣∣Ĥ∣∣Φo

(
α′
)〉

, H̄o

(
α,α′

)
=
〈
Φ̄o(α)

∣∣ Ĥ ∣∣Φo

(
α′
)〉
h

(2.11)

respectively. All these kernels are, in general, complex. The twinned kernels
are Hermitian, whereas the mixed ones are anti-symmetric.

3. The adiabatic approximation

The kernels in the Hill–Wheeler integral equations (2.5) and (2.9) can
be calculated when the many-body Hamiltonian Ĥ and its mean-field eigen-
states |φ(q)〉 are known. They express the complicated structure of the
many-body states. The adiabatic approximation consists in the negligence
of that structure. It means that we approximate the kernels by means of
the smooth functions which have the expected behavior and properties.
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In the case of the even systems, the overlap kernels are symmetric, real,
positive everywhere and tend asymptoticly to zero. Therefore, we approxi-
mate the overlap kernel by the Gaussian function, namely

Ie
(
β +

1

2
γ,β − 1

2
γ

)
≈ exp

(
−1

2
gµν(β)γµγν

)
, (3.1)

where β = 1
2(α+α′) and γ = α−α′ (the summation convention for upper

and lower indexes is used) with

gµν(β) = −∂
2Ie(β,β)

∂γµ∂γν
. (3.2)

Matrix g is real, symmetric and positive definite. The approximation is
known within the GCM [11] and called Gaussian Overlap Approximation
(GOA). The energy kernel contains additionally the quadratic term, namely

He

(
β +

1

2
γ,β − 1

2
γ

)
= exp

(
−1

2
gµν(β)γµγν

)[
v(β)− 1

2
hµν(β)γµγν

]
(3.3)

with

v(β) = He(β,β) ,

hµν(β) = −∂
2He(β,β)

∂γµ∂γν
− gµν(β)v(β) . (3.4)

Matrix h is real and symmetric as well.
In the case of the odd systems, we have to go beyond the GOA, because

the kernels are not real. The twinned kernels are Hermitian. Therefore, we
supplement the exponent in the counterpart of Eq. (3.1) with the imaginary
term, linear in γ, namely

Io
(
β +

1

2
γ,β − 1

2
γ

)
= exp

(
ikµ(β)γµ −

1

2
gµν(β)γµγν

)
, (3.5)

where
kµ(β) = −i∂Io(β,β)

∂γµ
. (3.6)

The counterpart of Eq. (3.3) takes the following form:

Ho

(
β +

1

2
γ,β − 1

2
γ

)
= Io

(
β +

1

2
γ,β − 1

2
γ

)[
v(β) + iuµ(β)γµ −

1

2
hµν(β)γµγν

]
(3.7)
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with
uµ(β) = −i ∂

∂γµ

(
Ho(β,β)

Io(β,β)

)
. (3.8)

The mixed kernels are anti-symmetric and can be presented in the form of
matrix elements of the anti-Hermitian operator R̂Ty within twinned generat-
ing states. For instance,

Īo
(
α,α′

)
= 〈Φo(α̃)| R̂Ty

∣∣Φo

(
α′
)〉
, (3.9)

where
α̃µ =

∑
ν

D2
µν(0, π, 0)αν (3.10)

is the quadrupole tensor α rotated around the intrinsic y-axis by angle π.
Hence, the mixed overlap and energy kernels can be presented within the
adiabatic approximation as follows:

Īo
(
α,α′

)
= Io

(
α̃,α′

)
f̄µ(β)γµ (3.11)

and
H̄o

(
α,α′

)
= Io

(
α̃,α′

)
ūµ(β)γµ , (3.12)

respectively, where

f̄µ(β) =
∂

∂γµ

(
Īo (α,α′)

Io (α̃,α′)

)
(3.13)

and

ūµ(β) =
∂

∂γµ

(
H̄o (α,α′)

Io (α̃,α′)

)
. (3.14)

4. The Bohr Hamiltonians

It has been known for a long time that the one-dimensional Hill–Wheeler
integral equation (2.5) with the GOA kernels, Eqs. (3.1) and (3.3), can be
approximated by the second-order differential equation [11]. It was shown
[12, 13] that it is still true in the case of several generator coordinates. In that
case, a tacit assumption is that the space of the generator coordinates with
the metric tensor g is flat. Using the Fourier analysis of the Gaussian energy
kernel, Onishi and Une [14] showed that the Hill–Wheeler integral equation
is formally equivalent to the differential equation having the Schrödinger-
type form.

We applied the GCM with the GOA to generate the quadrupole collective
states of the time-even nuclear systems [8]. We chose the five laboratory
components of the quadrupole tensor α as the generating coordinates in
spite of the common opinion that the three Euler angles ω = ϕ, ϑ, ψ and the
two intrinsic components of the quadrupole tensor q0, q2 should play the
role of them. We derived the Schrödinger equation
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Heψ(α) = Eψ(α) (4.1)

from the Hill–Wheeler equation (2.5) with the Gaussian kernels. The wave
function ψ is defined as follows:

ψ(α) =

∫
R
(
α,α′

)
ϕ
(
α′
)

dΩ
(
α′
)
, (4.2)

where the square-root kernel

R(α, ξ) =

(
2

π

)5/4

exp

(
−gµν

(
1

2
(ξ +α)

)
(ξµ − αµ)(ξν − αν)

)
(4.3)

is such that ∫
R(α, ξ)R

(
ξ,α′

)√
g(ξ)dΩ((ξ))

= exp

(
−1

2
gµν

(
1

2

(
α+α′

)) (
αµ − α′µ

) (
αν − α′ν

))
(4.4)

and g(ξ) = det g(ξ). The Bohr Hamiltonian has the following form:

He = − 1

2
√
g(α)

∂

∂αµ

√
g(α)Aµν(α)

∂

∂αν
+ V (α) . (4.5)

We have called it the Bohr Hamiltonian despite it has the weight
√
g(α)

which is different from the weight
√
B(α) (A ≡ B−1) of the Hamiltonian

of Eq. (1.1). Such a difference between the quasi-classical and quantum
Hamiltonians was foreseen already in [15]. It is still one more important
hidden difference between the quantum and the quasi-classical Hamiltonian.
The potential V (α) in Eq. (4.5) contains the so-called zero-point energy
corrections of the quantum origin which never appear in the quasi-classical
static potentials (Eq. (1.1)). The Bohr Hamiltonian H of Eq. (1.1) is valid
for the even-particle systems because they may have their classical counter-
parts. The Hamiltonian He of Eq. (4.5) is valid for the even-particle systems
because they are time-even.

In the case of the odd systems, we try to approximate the system of the
two Hill–Wheeler integral equations (2.9) with the adiabatic kernels (3.5),
(3.7), and (3.9), (3.12) by the system of the differential equations. The
problem is more complicated than that in the even systems not only because
of the two weight functions, ϕ(α) and ϕ̄(α) forming the alispinor, instead of
the single scalar one. In the present case, the adiabatic approximation is not
exactly the GOA. Moreover, we deal with the two quadrupole tensors, α and
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α̃ (dependent on each other — see Eq. (3.10)). Therefore, the methods used
in Refs. [11–13] should be modified. It was done in Ref. [9]. In consequence,
we obtain the following generalized eigenvalue differential equation in the
so-called alispin space:[(

Ho(α), −H̄o
†
(α)

H̄o(α), H∗o (α)

)
− E

(
1, −N̄o

†
(α)

N̄o(α), 1

)](
ψ(α)
ψ̄(α)

)
= 0 .

(4.6)
Relation between the alispinor wave function and the alispinor weight func-
tion is the following:(

ψ(α)
ψ̄(α)

)
= exp (ik(α) ·α)

( ∫
R (α,α′) exp

(
−ik(α′) ·α′

)
ϕ (α′) dΩ (α′)∫

R (α, α̃′) exp (−ik (α̃′) · α̃′) ϕ̄ (α′) dΩ (α′)

)
(4.7)

(see Eq. (4.3) for the definition of the square-root kernel R). The two diag-
onal elements of the Hamiltonian matrix are the differential operators, Ho

and H∗o , time-reversed to each other. The former one has the following form:

Ho(α) = − 1

2
√
g(α)

∂

∂αµ

√
g(α)Aµν(α)

∂

∂αν

−i 1

2
√
g(α)

(
∂

∂αµ

√
g(α)Uµ(α) +

√
g(α)Uµ(α)

∂

∂αµ

)
+ V (α) . (4.8)

In comparison to the Bohr Hamiltonian, He, of Eq. (4.5), it contains the
imaginary term with the first order differential operator. This is due to
the time-reversal symmetry breaking, which is the case for the odd sys-
tems. Therefore, the Hamiltonian of Eq. (4.8) is called the Bohr Hamilto-
nian for the odd systems. The non-diagonal elements in the Hamiltonian
and norm matrices are the first-order differential operators and take the
following forms:

H̄o(α) = − 1

2
√
g(α)

(
∂

∂α̃µ

√
g(α)Ūµ(α)

+
√
g(α)Ūµ(α)

∂

∂αµ

)
+ ūµ(α)(α̃µ − αµ) (4.9)

and

N̄o(α) = − 1

2
√
g(α)

(
∂

∂α̃µ

√
g(α)F̄2µ(α)

+
√
g(α)F̄µ(α)

∂

∂αµ

)
+ f̄µ(α)(α̃µ − αµ) , (4.10)

respectively.
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Using the laboratory components αµ of the quadrupole tensor as the
generator coordinates has the great advantage. Due to that we obtained the
five-dimensional differential equations, Eqs. (4.1) and (4.6), which allow us
to describe the most general quadrupole excitations of the even and the odd
nuclear systems, respectively. Nobody has been succeeded in deriving the
general five-dimensional quantum Bohr Hamiltonian using the intrinsic co-
ordinates: the Euler angles ω = (ϕ, ϑ, ψ) and intrinsic quadrupole moments
q = (q0, q2). However, the transformation to the intrinsic frame is required
when solving the five-dimensional equations. Then the Euler angles appear
in the equations in the form of the three differential angular momentum oper-
ators, Lx(ω), Ly(ω), Lz(ω), which have the known eigenfunctions DIMK(ω)
(see Ref. [15]). The remaining quantities, which appear in the equations, are
functions of the two intrinsic quadrupole moments, q0, q2. In consequence,
we are left with the systems of the two-dimensional differential equations to
solve.

5. Conclusions
We recapitulated our investigations on the nuclear collective quadrupole

states by means of the quantum variational Generator Coordinate Method
(GCM). Here, we discussed the principal assumptions and the most impor-
tant results. All the details of the derivations and all the formulae useful for
the calculations are contained in Refs. [8, 9]. To investigate the quadrupole
excitations, the laboratory components of the quadrupole tensor were cho-
sen as the five generator coordinates. It is well-known that the variational
principle leads to the Hill–Wheeler integral equations. However, it turned
out that in the approximation, which we call adiabatic, the integral equa-
tions can be substituted by the second-order differential equations in the
five-dimensional space. In spite of the uniform approach for the all nuclear
systems, there are the essential differences in the treatment of the even- and
the odd-particle nuclei. The time-reversal symmetry is the clue.

Equation (2.2) shows that the time-reversal symmetry is conserved in the
even-particle systems. Then, the overlaps of the generating states are real
positive and the adiabatic approximation is simply the GOA. In such a case,
the Hill–Wheeler equation reduces to the second-order differential equation
with the real, Hermitian Hamiltonian. The structure of this Hamiltonian
is identical with that of the quasi-classical Bohr Hamiltonian, and this is
why the procedure of solving the eigenvalue equation (4.1) is known. A few
computational codes diagonalizing the Bohr Hamiltonians are at the public
disposal on the market (e.g., Ref. [16]). The formulae for the weight, the
three inertial functions, the three moments of inertia and the potential can
be taken from Ref. [8] to diagonalize the new Bohr Hamiltonian. It would
be interesting whether the results will be different, better or worse, to those
obtained so far with the quasi-classical approaches.
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Another story is with the odd systems. Equation (2.3) indicates break-
ing of the time-reversal symmetry. The generating states are associated
automatically in the Kramers doublets and the number of the Hill–Wheeler
equations has doubled. The notion of the alispinors arises. The overlaps are,
in general, complex. The adiabatic approximation should be extended be-
yond the GOA. Finally, the two Hill–Wheeler equations in the alispin space
can be approximated by the doublet of the coupled second-order differen-
tial equations. On the contrary to equation (4.1) in the case of the even
nuclei, the alispinor equations (4.6) for the odd systems are quite new and
not known commonly. No procedures for solving them have been developed.
The collective models for the odd nuclei have dealt with the systems core(s)
plus (quasi-)particle and have coped with the doubtful phenomenon of the
core polarization. Here, we treat the odd nucleus as a whole and no core po-
larization appears. It would be worthwhile to develop such a new approach
to the odd nuclei.
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