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NUCLEAR SYMMETRY ENERGY
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We present the calculation of the symmetry energy Esym, its first Lsym

and second derivative Ksym. To achieve it, we will further extend the Rel-
ativistic Mean Field (RMF) model already developed with finite nucleon
volumes inside Nuclear Matter (NM). The correction to the nucleon energy
εA is proportional to the product of nucleon volume VN and pressure. It
gives the first order differential equation for energy εA and we derive here
a similar differential equation for Esym. The resulting Equations of State
(EoS) are softer.
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1. Introduction

Our objective is to examine the important approximation in the nuclear
mean-field calculations, namely the absence of nucleon volumes in almost all
models of RMF [1]. The nuclear EoS, in particular compressibility, depends
on the NN interaction but also should depend on the compressibilityK−1N of
quark matter confined inside nucleons. The novel feature of our model [2, 3]
is a direct volume contribution of pressure on the energy of a nucleon, missed
in previous works [4–6] on excluded volume effects with the constant nucleon
radius [7] and also absent in Quark–Meson Coupling (QMC) models [8, 9].
For positive pressure pH , the nucleon bag decreases its radius (8) due to the
work of the meson field on the bag surface. For negative pressure pH , the
nucleon bag increases its radius (8), so the energy is transfered in opposite
direction — from bags to the meson field. The simplest (σ, ω) model [10, 11]
with constant couplings via scalar and vector mesons in NM, plus ρ meson
exchange, which contribute to symmetry energy will be used to obtain clear
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conclusions. We will neglect nuclear pion contributions above the satura-
tion point. Dirac–Brueckner calculations show that the pion effective cross
section, in the reaction of two nucleons N + N = N + N + π, is strongly
reduced at higher nuclear densities above the threshold [12] (also with RPA
insertions to the self-energy of N and ∆-resonance [13]). We restrict our
degrees of freedom to interacting nucleons.

In order to show the main features of our model, let us compare the
chemical potential µqN for nucleons with volumes VN with analogous chemical
potential µN for point-like nucleons as are considered in the standard RMF
models. The chemical potential in the system with the uniform pressure
p = dU/dV and volume V is

µN =

[
∂U

∂A

]
V

where dU = −pdV + µNdA . (1)

It can be interpreted as an energy increase created by the additional particle.
When the part of the total volume V is occupied by the nucleon volumes
AVN , then the resulting pressure pH = p/(1−AVN/V ) is higher because the
accessible volume is respectively smaller. Let us compare the chemical po-
tential µrmf

N for point-like nucleons with chemical potential for finite nucleon
volumes — µbagN . Let us check it using the Hugenholz–van Hove theorem
(HvH) with respective nucleon energies: U = εrmf

N for point-like nucleons
and U = εbagN for nucleons as quark bags with volumes VN . We have, for
created pressures p and p′ in these two systems, the following HvH relations:

µrmf
N = εrmf

A +p′/% , (2)

µbagN = εrmf
A +pH/% = εbagA +pH((V −AVN )/A+ VN ) = εbagA +p/% . (3)

The second HvH relation (3) is satisfied when the single-particle energies for
nucleon bags are diminished

εbagA = εrmf
A − pHVN (4)

by the energy transfer ∆E(%) = pHVN (%) from the meson field to the quarks
inside the nucleon bag. Thus, the volume energy pHVN (%) weakens (4) “ef-
fectively” the repulsion between nucleons and, consequently, the pressure is
smaller in a system with nucleon bags (p < p′). It implies that chemical po-
tential is smaller for an RMF model with nucleons described by quark bags.
Consequently, the Fermi energy (equal to the chemical potential Ebag

F = µbagN

(3) at saturation density) is related to Ermf
F = µrmf

N calculated for point-like
nucleons (3), as follows:

µbagN < µrmf
N for p > 0 , (5)

µbagN = µrmf
N at the saturation density %0 . (6)
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Note that at the saturation point the derivative dεqA(%)/d%|%=%0 = 0 but
derivative of the Walecka part εrmf

N is dεrmf
A (%)/d%|%=%0 > 0. Differentiating

equation (4), one obtains relation (7)

K−1(%0) = 9
(1− %0VN (%0))

VN

(
εrmf
A (%)

)′ ∣∣∣∣
%=%0

, (7)

R0/R(%) = 1 + ∆E(%)/MN (%) , (8)

where ∆E(%) = pHVN =
%2εqA

′
(%)VN (%)

(1− %VN (%))
(9)

which determines the new saturation density, slightly bigger (%0=0.162 fm−3
for the compressibility K−1(%0) = 250 MeV), then %0 = 0.149 fm−3 in a
basic RMF model [11] with point-like nucleons. In that way, the nuclear
compressibility K−1 determines the saturation density where the pressure
vanishes by dεqA(%)/d%|%=%0 = 0. As a result, the saturation density inside
NM depends from compressibility and nucleon volume. The energy of NM
in density is shown for different models in Fig. 1.

Fig. 1. Energy of NM above the equilibrium density for different models [3].
Walecka [10] and Dirac–Bruckner–Hartree–Fock (DBHF) [14] calculations with the
Bonn A interaction are shown as long dashes. Results for constant nucleon mass
MN are denoted by dotted lines (for R = 0.5 fm and R = 0.7 fm). Solid lines are
for constant nucleon radii (see scenario B in [2]).
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2. Symmetry energy in dense nuclear matter

The symmetry energy Esym is defined as the coefficient of the quadratic
term in the expansion of the energy per nucleon εqN (%) in neutron excess
given by the relative difference of neutron and proton densities t = (%n −
%p)/%. Since energy differentiation with respect to density is alternating
with differentiation with respect to the parameter t, the following equation
for symmetry energy has the similar structure to equations (4), (8) in NM
with Fermi momentum PF and effective nucleon mass M∗2N :

Esym=
∂2εbagA (%)

2∂t2
=Ermf

sym−
L

3

VN (%)

(1−%VN (%))

∣∣∣∣
%=%0

,
L

%0
= 3

dEsym

d%

∣∣∣∣
%=%0

, (10)

where Ermf
sym=

∂2εrmf
N

∂t2
=

g2ρ
8m2

ρ

%+
P 2
F

6
√
P 2
F+M∗2N

. (11)

It is straightforward to determine the additional coupling gρ of the ρ me-
son [15, 16], which contributes only to the Esym of NM (11) and correct
the energy of asymmetric neutron matter. The σ and ω meson exchange
set down the energy of nuclear matter εbagN (4), therefore, the value of the
sum (Es + L

3
VN (%)

(1−%VN (%))) in (11) is determined by the value of ρ contribu-
tions for a given couplings of scalar and vector meson. The parameter
Lsym = 88 MeV of symmetry energy slope calculated without nucleon vol-
ume corrections is much higher then the phenomenologically extrapolated
value Lexp

sym ' 55 MeV. If we include nucleon volumes and solve our equa-
tion (11) numerically starting from the saturation density with the meson
ρ coupling ((gρ/mρ)

2 = 3.8 fm2), we get [17] Es = 31.5 MeV and the slope
Lsym = 55 MeV — in very good agreement with the phenomenological es-
timate Es

exp = 31.5 ± 3 and Lexp = 58.5 ± 16 MeV [18]. In addition, their
density dependence shown in Fig. 2 agrees with terrestrial and astrophysical
constrains [18, 19].

Differentiating equation (11), we get a following expression for the second
derivative of symmetry energy Ksym:

Ksym = %
∂Ermf

s

∂%

(1− %VN )

%VN
− %

1− %VN
∂Esym

∂%

(
1 + %2

∂VN (%)

∂%

) ∣∣∣∣
%=%0

.(12)

We present the plot of the second derivative Ksym given by equation (12) in
Fig. 3. The broken curves show the Ksym for the solution started from the
saturation point with a choice — Es = 31.5 MeV and slope Lsym = 55 MeV.
Note that Lsym reaches high positive value at equilibrium, then the function
goes down when the density is increasing or decreasing to zero. However, this
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Fig. 2. Symmetry energy of NM Esym (left) and the symmetry energy derivative
Lsym (right) above the equilibrium density as a function of the nuclear density for
two nucleon radii R = 0.7 fm and R = 0.5 fm.
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Fig. 3. The second derivative of symmetry energy Ksym as a function of the nuclear
density for nucleon radii R = 0.7 fm and R = 0.5 fm.

solution is not unique, we can fit a bigger value of Lsym increasing ρ coupling.
In order to have a unique solution, it is better to start our integration of
(11) from small %0 = 0.02 fm−3, where the Lsym is well-approximated by
RMF expression (low pressure). Now, we fix Esym = 31.5 MeV with higher
value of ((gρ/mρ)

2 = 4.3 fm2) and we get the monotonic slope of Lsym

depending on the nucleon radii (Figs. 4 and 5). At the saturation density,
we obtain Lsym = (65–80) MeV which strongly depends on nucleon volumes
excluding the radii R < 0.6 fm. The previous high, positive peak of Ksym at
equilibrium density is absent for solid lines in Fig. 3, which shows the solution
of our differential equation (11) starting from very low density, where the
slope parameter Lsym has minimum at %0 = 0 and increases with density.
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Fig. 4. Symmetry energy of NM for different nucleon radii R = 0.6 fm, R = 0.7 fm,
R = 0.8 fm. Astrophysical constrains (astro-con.) from [18] are marked by two
dash-dotted lines.
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Fig. 5. The symmetry energy derivative Lsym as a function of nuclear density for
the nucleon radii R = 0.5 fm, R = 0.6 fm, R = 0.7 fm.

3. Results and conclusions

Our results, shown in Fig. 4, agree with astrophysical constrains [18] for
the nucleon radii R > 0.6 fm. In our model, the pressure contribution to
energy originated from the finite sizes of nucleons with quarks degrees of
freedom. Consequently, the derivative of the symmetry energy Lsym at the
saturation density can get from our equation (11) different values presented
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in Fig. 5: from 65 MeV for R = 0.8 fm to 80 MeV for R = 0.7 fm. It al-
lows to connect the nuclear compressibility with the saturation density and
determine their values from equation (7). In addition, the value of the sym-
metry slope L is well-fitted for R > 0.6 fm with the help of derivative term
in equation (11). Therefore, the presented model of compressed nucleons
in dense NM is suitable for studying Equation of State of nuclear matter
and properties of neutron stars [20]. Further work for finite temperature is
planned.
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