
Vol. 13 (2020) Acta Physica Polonica B Proceedings Supplement No 3

APPLICATION OF KANTBP PROGRAM
OF FINITE ELEMENT METHOD

IN THE COUPLED-CHANNELS CALCULATIONS
FOR HEAVY-ION FUSION REACTIONS∗

S.I. Vinitskya,b, P.W. Wena,c, A.A. Guseva,d

O. Chuluunbaatara,e, R.G. Nazmitdinova,d, A.K. Nasirova

C.J. Linc,f , H.M. Jiac, A. Góźdźg

aJoint Institute for Nuclear Research, 141980 Dubna, Russia
bPeoples Friendship University of Russia (RUDN University)

117198 Moscow, Russia
cChina Institute of Atomic Energy, 102413 Beijing, China

dDubna State University, 141982 Dubna, Russia
eInstitute of Mathematics and Digital Technologies

Mongolian Academy of Sciences, 13330 Ulan-Bator, Mongolia
fDepartment of Physics, Guangxi Normal University, 541004 Guilin, China
gInstitute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland

(Received January 29, 2020)

We apply a new calculation scheme of a finite element method and
upgraded program KANTBP in the coupled-channels calculations for heavy-
ion fusion reactions. We diagonalize the matrix of close coupled effective
potentials to formulate ingoing wave boundary conditions in point within a
pocket of the potential well with a true set of thresholds. Efficiency of the
proposed approach is shown by successfully described experimental data
for the sub-barrier and above-barrier fusion cross section of some reaction
systems.
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1. Introduction

In the coupling channel (CC) method, regular boundary conditions with
an additional optical potential starting with [1–3] are used to describe sub-
barrier and above-barrier reactions with heavy ions. An alternative method
of the ingoing wave boundary conditions (IWBC) uses the real potentials
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[4–8]. However, for the formulation of the Robin or third type boundary
conditions with the correct set of threshold energies, a diagonalization of the
channel coupling matrix of the effective potentials (CCMPs) at the internal
point pocket of potential well is required [9, 10].

In the present paper, a fusion of two nuclei that occurs at strong cou-
pling of their relative motion to surface vibrations is analyzed. To this aim,
a new efficient finite element method (FEM), that improves the KANTBP
code [11–14], is used to solve numerically CC equations with the IWBC for-
mulated with the above diagonalization of the CCMPs. A comparison of
the presented results with available experimental data demonstrates some
advantages of the modified KANTBP code with respect to the modified Nu-
merov method with the IWBC formulated without the diagonalization of
the CCMPs, presented as the CCFULL code [7]. It is shown that the deep
sub-barrier and above-barrier fusion cross sections of some reaction systems
have been successfully described.

Structure of the paper is the following. In Section 2, we present diag-
onalization process of the IWBC. In Section 3, we describe procedure of
calculations of the vibrational coupling matrix elements of effective poten-
tials. In Section 4, we discuss our results of calculations of some sub-barrier
fusion reactions. In Conclusion, we describe further applications of KANTBP
codes.

2. The setting of the problem with diagonalization of IWBC

We will solve the CC equations in isocentrifugal approximation (neglect-
ing the Coriolis coupling of relative and internal nuclear motion of two heavy
ions) on interval r ∈ (0,∞) by reduction to the finite interval r ∈ (rmin, rmax)

N∑
n′=1

((
− d2

dr2
− Ẽ

)
δnn′ +Wnn′(r)

)
ψn′no(r) = 0 . (1)

Here, Ẽ = 2µE
~2 is the center-of-mass energy, no is a number of the open

entrance channel with a positive relative energy k2no
= Eno = Ẽ − εno > 0,

no = 1, . . . , No ≤ N , {ψnno(r)}Nn=1 are components of a desirable matrix
solution, Wnn′(r) = Wn′n(r) are elements of the CCMPs determined by

Wnn′(r) =
2µ

~2

[(
l(l + 1)~2

2µr2
+ V

(0)
N (r) +

ZPZTe
2

r
+ εn

)
δnn′ + Vnn′(r)

]
. (2)

Here, µ = APAT/(AP +AT) is reduced mass of the target and the projectile
with masses AT and AP and charges ZT and ZP, respectively. The quantum
number l is orbital momentum of relative motion, Wnn′(r → ∞) = εnδnn′
is a set 0 ≤ ε1 < ε2 < . . . < εN of eigenenergies in increasing order of the
Hamiltonians of internal motion in the harmonic approximation [7, 8].
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To formulate IWBC in the point r = rmin with the correct set of threshold
energies, we will diagonalize the N ×N matrix W ≡W (rmin) at r = rmin

WA = AW̃ ,
{
W̃
}
nm

= δnmW̃mm ,

where A ≡ A(rmin) is N ×N matrix of eigenvectors and W̃11 ≤ W̃22 . . . ≤
W̃NN are corresponding eigenvalues. In this case, the linear independent
matrix solution {φnm(r)}Nn,m=1 of Eqs. (1) can be written in the form of

φnm(r) = Anmym(r) . (3)

The functions ym(r) are solutions of the uncoupled equations

y′′m(r) +K2
mym(r) = 0 , K2

m = Ẽ − W̃mm .

In open channels at K2
m > 0, m = 1, . . . ,Mo ≤ N and in closed channels

at K2
m < 0, m = Mo + 1, . . . , N , the solutions ym(r), respectively, have the

form of

ym(r) =
exp(−ıKmr)√

Km
, ym(r) =

exp(|Km|r)√
Km

. (4)

In this case, the matrix of the asymptotic solutions {ψas
nno

(r)}Nn=1 at no =
1, . . . , No of Eq. (2) expressed by the linear combinations of the linear inde-
pendent solutions φnm(r) determined by Eqs. (3) and (4) is

ψas
nno

(r) =

Mo∑
m=1

φnm(r)T̂mno ≡
Mo∑
m=1

Anmym(r)T̂mno , r ≤ rmin , (5)

where T̂mno ≡ T̂
(l)
mno is the matrix of desirable partial transmission ampli-

tudes with the correct set of threshold energies K2
m > 0, m = 1, . . . ,Mo ≤ N

in exit open channels of the IWBC that is calculated by the KANTBP 3.0
code.

Remark.The above asymptotes differs from the asymptotes {ψas
nno

(r)}Nn=1

at no = 1, . . . , Ño of Eq. (1) subjected the IWBC without diagonalization
the matrix W ≡ W (rmin) at r ≤ rmin accepted in CCFULL code with the
non-correct set of threshold energies (kn(rmin))2 = E −Wnn(rmin) counting
on the diagonal elements Wnn(rmin). The corresponding asymptotes for the
open exit channels (kn(rmin))2 > 0 at n = 1, . . . , Ño and the closed exit
channels (kn(rmin))2 ≤ 0 n = Ño + 1, . . . N have the form of

ψas
nno

(r)=

{
exp(ıkn(rmin)r)T̂nno , kn(rmin) =

√
E−Wnn(rmin) > 0 ,

exp(κn(rmin)r) , κn(rmin) =
√
Wnn(rmin)−E > 0 .
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In Fig. 1 (right), we display two sets of the diagonal elements ~2Wnn(rmin)/

2µ and the corresponding eigenvalues ~2W̃n(rmin)/2µ that revival the in-
creasing number Mo > Ño of exit open channels in deep sub-barrier region
of the energy E of fusion reactions with the IWBC formulated after diago-
nalization of the matrix W ≡W (rmin).

Fig. 1. Left: The structure of matrix Ônm(r) for NT2+
= 2, NT3−

= 2, NP2+
= 2

of vibration coupling. Right: The effective potential V (r) (solid line), diagonal
matrix elements of matrix W (rmin) (D) and eigenvalues of matrix W (rmin) (E) for
the case of 32S+182W.

At r = rmax, the asymptotic solutions {ψas
nno

(r)}Nn=1 for no = 1, . . . , No

of Eq. (1) are given in terms of the normalized outgoing and incoming
Coulomb partial wave functions [15], Ĥ±l (knr) = H±l (knr) exp(∓iσl(kn)),
where σl(kn) is the Coulomb phase,H±l (knr)=(±iFl(ηn, knr)+Gl(ηn, knr))/√
kn, kn ≥ 0, n = 1, . . . , No ≤ N , for open entrance channels and for com-

ponents of ψas
nno

(rmax) = o(1) with elements n = No + 1, . . . , N for closed
entrance channels

ψas
nno

(r) =

{
Ĥ−l (knr)δn,no − Ĥ+

l (knr)R̂nno ,

2|kn|1/2rl+1 exp(−|kn|r)U(l + 1 + ηn, 2l + 2, 2|kn|r) .
(6)

Here, U(l + 1 + ηn, 2l + 2, 2|kn|r) is the Whittaker function [15], R̂nno are
desirable partial reflection amplitudes, in particular, at no = 1 from a ground
state |io〉 = |no − 1〉 = |0〉 of the intrinsic motion before the collision. The
Robin boundary conditions for the solutions ψnno(r) of Eq. (1) read as(

dψnno(r)

dr
−

N∑
n′=1

Gnn′(r)ψn′no(r)

)
r=rmin,rmax

= 0 .

They are resolved by matching at r = rmin, rmax the matrix {Gnn′(r)}Nn,n′=1

of logarithmic derivatives of the numerical solutions ψnno(r) of Eq. (1) with
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their asymptotic expansions ψas
nno

(r) from Eqs. (5) and (6), depending on
unknown partial transition and reflection amplitudes T̂nno and R̂nno , imple-
mented in the KANTBP 3.0 code [11, 13]. The partial tunneling probability
Pl(E) from the entrance open channel no, in particular, the ground state
(no = 1) is determined by the transmission coefficient

Pl(E) ≡ T (l)
nono

(E) .

Finally, the total fusion cross section is expressed as a sum over partial waves
at the center-of-mass energy E, which is

σf(E) =

L∑
l=0

σ
(l)
f (E) =

π

k2no

L∑
l=0

(2l + 1)Pl(E) .

At fixed orbital momentum l, it is given by summation over all possible
intrinsic states of entrance No and exit Mo open channels

R(l)
nono

(E) =

No∑
n=1

∣∣∣R̂nno

∣∣∣2 , T (l)
nono

(E) =

Mo∑
m=1

∣∣∣T̂mno

∣∣∣2 ,
where the relations T (l)

nono(E) = 1−R(l)
nono(E) take place. Note that the condi-

tion T (l)
nono(E) + R

(l)
nono(E) − 1 = 0 fulfills with ten significant digits in cal-

culations by means of the KANTBP code implemented FEM [11–13].

2.1. The vibrational coupling matrix elements of effective potentials

To demonstrate working capacity of our approach, we analyze couplings
of the relative motion to surface vibrations of a compound nucleus only,
comparing our results with well-known results from literature. We consider
a potential between the projectile and the target as a function of the relative
distance r between them

V (r) = VN (r) + VC(r) .

The potential contains the Coulomb term VC = ZPZTe
2/r and a phe-

nomenological nuclear potential VN (r) in the Woods–Saxon form

VN (r) = − V0
1 + exp[(r −R0)/a0]

. (7)

Here, the parameters V0, R0, a0 are the potential depth, potential radius,
and diffuseness, respectively, derived from the Akyüz–Winther (AW) pa-
rameterization [16] V0 = (16πγa0R̄) MeV, R0 = RP + RT, 1

a0
= 1.17[1 +



554 S.I. Vinitsky et al.

0.53(A
−1/3
P +A

−1/3
T )] fm−1, R̄ = RPRT

RP+RT
, Ri = (1.2A

1/3
i −0.09) fm, i = P, T ,

γ = 0.95
(

1− 1.8 (NP−ZP)(NT−ZT)
APAT

)
MeV fm−2. The coupling matrix ele-

ments Vnn′(r) = Vn′n(r) in Eq. (2) are generated by changing the radius R0

in the potential V (r) to a dynamical operator R0 + Ô [17]

Ô =
∑
i=T,P

λmax
i∑
λi

βλi√
4π
rc A

1/3
i

(
a†λi0 + aλi0

)
, (8)

where a†λi0 (aλi0) is the creation (annihilation) operator of the vibrational
mode of the multipolarity λ. In this representation, the matrix elements of
the operator Ô between the vibrational states |n〉 =

∏
i,λi
|nλi〉 and |m〉 =∏

j,λj
|mλj 〉 at i, j = P, T and λi = 2, . . . , λmax

i , λj = 2, . . . , λmax
j read as

Ônm =
∑
i=T,P

λmax
i∑
λi=2

βλirc A
1/3
i√

4π

(√
mλiδnλi ,mλi−1+

√
nλiδnλi ,mλi+1

)∏
λj 6=λi

δnλj ,mλj ,

where the nλi-phonon or mλj -phonon state of the multipolarity λi or λj is
defined as [8]

|nλi〉 =
1√
nλi !

(
a†λi0

)nλi |0〉 , |mλj 〉 =
1√
mλj !

(
a†λj0

)mλj |0〉 .
The deformation parameter βλi , that defines the amplitude of the zero-point
motion, can be determined from the experimental transition probability

βλi =
4π

3ZiR
λi
i

√
B(Eλi) ↑

e2
,

where Ri, i = P, T is the radius of the spherical nucleus. The adopted
structure properties including excitation energies, deformation parameters
for the nuclei used in this study are listed in [18, 19]. The low-lying collective
2+ and 3− vibrational states are considered. The radius parameter rc in the
coupling interactions of Eq. (8) is assumed as 1.2 fm for both target and
projectile in all the following calculations. The numbers of the target 3−

phonon, the target 2+ phonon and the projectile 2+ phonon are denoted as
NT3−

, NT2+
, and NP2+

, respectively. The total CC number will be Nc =
(NT3−

+ 1)(NT2+
+ 1)(NP2+

+ 1) − 1 when all the mutual excitations are
included. It means that the number of coupled equations in Eq. (1) is
equal to N = Nc + 1. We need the matrix elements Vnn′(r) of the coupling
between the vibrational states |n〉 and |m〉 of the target and projectiles listed
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in Table I. The nuclear coupling matrix elements V (N )
nm (r) are calculated

using the eigenvalues Oα and eigenvectors 〈m|α〉 of the matrix Ônm having
the band structure shown in Fig. 1 (left), i.e. solutions of the algebraic
eigenvalues problem

N∑
m=1

(
Ônm −Oαδnm

)
〈m|α〉 = 0 .

The nuclear coupling matrix elements V (N )
nm (r) are then

V (N )
nm (r) =

N∑
α=1

〈n|α〉〈α|m〉VN (r,Oα)− V (0)
N (r)δn,m .

The term V
(0)
N (r) ≡ VN (r) counteracts the coupling interaction in the en-

trance channel. The linear coupling approximation for the Coulomb coupling
V C
nm(r) of the vibrational degree of freedom is taking into account [7]

V C
nm(r)=

∑
i=T,P

λmax
i∑
λi=2

fλii (r)
(√

mλiδnλi ,mλi−1 +
√
nλiδnλi ,mλi+1

)∏
λj 6=λi

δnλj ,mλj ,

where fλii (r) = βλi/(4π)3ZPZTe
2/(2λi + 1)Rλii /r

λi+1. The total coupling
matrix element Vnm(r) is given by the sum of Vnm(r) = V

(N )
nm (r) + V C

nm(r).

TABLE I

The list of the 27 CC for NT3−
= 2, NT2+

= 2, NP2+
= 2 in the form of |n〉 =

|T3−T2+P2+〉 including the ground-state channel |0〉 = |000〉. Non-marked are
mutual states, the target and projectile states are marked by ∗ and ∗∗, respectively.

0 1 2 3 4 5 6 7 8
|000〉 |100〉∗ |200〉∗ |010〉∗ |110〉∗ |210〉∗ |020〉∗ |120〉∗ |220〉∗

9 10 11 12 13 14 15 16 17
|001〉∗∗ |101〉 |201〉 |011〉 |111〉 |211〉 |021〉 |121〉 |221〉

18 19 20 21 22 23 24 25 26
|002〉∗∗ |102〉 |202〉 |012〉 |112〉 |212〉 |022〉 |122〉 |222〉
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3. Results of calculations of fusion reactions

In the following, we will examine two fusion reactions including 32S+182W,
and 28Si+178Hf. The standard Akyüz–Winther-type Woods–Saxon poten-
tial mentioned above is adopted. Collective vibrations corresponding to
NT3−

= 2, NT2+
= 2, and NP2+

= 2 are included. There are totally 26
coupled channels. As mentioned above, we have shown the potential V (r)
for fusion reaction 32S+182W at zero angular momentum in Fig. 1 (right). In
order to clarify the role of the diagonalization procedure in the left boundary,
the values ~2W̃ n/2µ (labeled E) and ~2W nn/2µ (labeled D) are also indi-
cated in this figure. For this fusion reaction, it can be seen that ~2W̃ n/2µ
spreads much wider than ~2W nn/2µ. This demonstrates the significance
of the non-diagonal elements. By considering these elements, the threshold
changed a lot, as well as the number of open channels and closed channels.
This will change the tunneling probability and the fusion cross section a lot.

The fusion cross sections for fusion reaction 32S+182W and 28Si+178Hf
at the linear and logarithmic scales are presented in Fig. 2 (left) and
Fig. 2 (right), respectively. The experimental data are taken from Ref. [21]
for 32S+182W, and Ref. [22] for 28Si+178Hf. The predictions by KANTBP
and the modified Numerov method (MNumerov) are shown as the solid and
dashed lines. From this figure, it can be seen that the sub-barrier predictions
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Fig. 2. Left: Fusion cross sections for fusion reaction 32S+182W. Right: Fusion
cross sections for fusion reaction 28Si+178Hf. The experimental data (Exp, solid
circles) are taken from Ref. [21] for 32S+182W, and Ref. [22] for 28Si+178Hf.
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with diagonalization procedure (KANTBP) are generally more stable than
that with the original boundary condition (MNumerov) at the left bound-
ary. This is because the non-diagonal elements have been considered in this
newly developed method, and there are less sudden non-continuous changes
for wave functions.

In the left and right upper panels of Fig. 2, from the fusion cross sections
at the linear scales for these two reactions, we can see that the predictions
of the cross section with diagonalization are generally higher at all energy
region for these two cases. That with diagonalization agrees with experi-
mental data better with the standard Akyüz–Winther-type Woods–Saxon
potential at both above-barrier and sub-barrier energy. The increase of the
fusion cross sections is due to that shown in Fig. 1 (right). The threshold
~2W̃ n/2µ spreads much wider than ~2W nn/2µ. Especially, the minimum
value of ~2W̃ n/2µ is obviously much lower. This is equivalent to the in-
crease of the energy gap between incident energy and the minimum energy,
which will increase the number of effective angular momentum. As a re-
sult, this causes the increase of the fusion cross sections, which is helpful to
understand the diffuseness parameter anomaly problem [23].

4. Conclusion

The upgrade of KANTBP 3.0 [12] and next version KANTBP 4M pro-
gram implemented in MAPLE are given in program library JINRLIB [14]
for solutions to a given accuracy of multichannel scattering, eigenvalue and
metastable state problems for the system of ODEs of the second order with
continuous or piecewise continuous real or complex-valued coefficients.

Discretization of the boundary problems are implemented by the FEM
with the interpolation Lagrange polynomials in KANTBP 3.0, and Hermite
polynomials in KANTBP 4 preserves the property of continuity of derivatives
of the desired solutions.

For a reduction of the scattering problem with a different number of
open channels in the two asymptotic regions to the boundary problems on
a finite interval, the asymptotic boundary conditions are approximately the
homogeneous non-diagonal Robin or third-type boundary conditions.

The developed approach and codes provide useful tools for the CC calcu-
lations in heavy-ion fusion reactions. Since the explanations of experimental
data are sensitive to the theoretical calculation, this study offers new insight
into the understanding of the diffuseness parameter anomaly problem. We
will show its impact on other phenomena such as on the deep sub-barrier
hindrance phenomenon in our following works.
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