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Financial markets are examples of complex systems being driven by
both endogenous processes as well as exogenous shocks. One can obtain
insight into the dynamics of those systems by assuming market partici-
pants (agents) belonging to particular groups and being characterized by a
particular demand and supply functions. The agents themselves are likely
to switch to a different group under persuasion of their peers (herding be-
havior). The mathematical description of this phenomenon in terms of a
non-trivial Markov model, combined with the clearing of the market by a
market maker provides analytical results for the probability distribution of
the asset prices and returns. That in turn allows for trading strategies to
be designed and implemented in real life. In the course of the article, I will
review several agent-based models as well as mention the practicalities of
quantitative trading.
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1. Introduction

— We use a bottom-up approach to describe the financial market.

— We start from the rules of behavior and interaction between traders
(agents) to reproduce market features on the macro-scale (stylized
facts, trends and patterns).

— Our models are inspired by statistical physics (kinetic spin models,
cellular automata, path integrals) however, in addition, we use mod-
ern tools from probability and statistics (Markov chains, convergence
of stochastic processes) along with financial economics (Walras equi-
librium theory, behavioral economics).

— We describe convergence of economic systems towards equilibrium
rather than only their behavior at equilibrium.

∗ Plenary talk presented at the 45th Congress of Polish Physicists, Kraków, September
13–18, 2019.
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2. Objectives

— Describe and predict bubbles in the financial or housing markets.
— Develop new reliable trading strategies (statistical arbitrage) to be

used in turbulent times (subprime mortgage crisis).
— Develop methods for hedging large fluctuations (volatility trading) to

avoid financial disasters (Long Term Capital Management, Northern
Rock).

3. Model assumptions

— The market is composed of agents who buy, sell or hold the asset.
— Agents are divided into several groups depending on their behavior,

their access to information and their demand or supply for the asset.
— We consider three groups; the fundamentalists (price asset according

to its “fundamental” value), the trend followers (watch the trend and
invest accordingly) and noise traders (bet randomly).

— Agents can switch between groups endogenously with likelihoods that
depend on the numbers of agents.

— The total number of agents N is finite and the distribution of the
numbers of agents, i.e. the numbers of fundamentalists nF, of trend
followers nTF and of noise traders nNT, evolves in discrete time as a
zero-memory process (Markov chain).

— The asset price is settled by a Walrasian auctioneer who matches the
supply and demand of traders.

4. The results

A Non-linear, non-stationary Markov chain: The full time-dependent
solution for the evolution of a generic class of Markov chains with
occupation dependent transition probabilities1.

B Non-stationary distribution of price returns: The distribution of re-
turns as a function of time.

C Parameter estimation: Maximum likelihood and the method of mo-
ments.

A: Let (n
(T)
t , n

(F)
t ) = (n,N − n) subject to nT + nF = N = const be

the numbers of agents in the different groups at time t and let ft(n) :=

P
(
n

(T)
t = n

)
. Then:

1 The above result can be applied in such fields as non-linear diffusion processes or
modeling distributions of wealth in the society, modelling spreading of epidemics, etc.
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Master equation (conditional probabilities)

ft+1(n) = π (n− 1→ n) ft(n− 1)

+π (n+ 1→ n) ft(n+ 1)

+ (1− π (n→ n+ 1)− π (n→ n− 1)) ft(n) . (4.1)

Following Kirman (ensure n = 0, N absorbing states), we take

π (n→ n+ 1) = (N − n) (a+ + bn) ,

π (n→ n− 1) = n (a− + b(N − n)) , (4.2)

where a± = A±/N and b = B/N2 (ensure probabilities positive).
Solution (small-t expansion)

ft(n) =
t∑

p=0

δn,p

2t−2∑
j=0

A(j)
p (t)

1

N j
, (4.3)

where

A(0)
p (t) :=

(
t

p

)
(1−A+)t−pAp+ , (4.4)

A(j)
p (t) :=

2j−1∑
q1=d j

2
e

1+q1∑
q=0

(
t

1+q1

)(
t−1−q1

p−q

)
(1−A+)t−1−q1−p+q Ap−q+1

+ W
(j)

q1−d j2 e+1,1+q
,

(4.5)

where

W(j)
q,q1 :=

1

(q1−1)!

dq1−1

dzq1−1
W(j)
q+dj/2e(z)

∣∣∣∣
z=0

for q = 1, 2j − dj/2e
q1 = 1, 1 + q + dj/2e , (4.6)

W(j)
q (z) =[
A+ (q − 1)W(j−1)

q−2 (z) +
(
W(j−1)
q−1 (z)

)′]
(1− z) (A− +B + z(A+ −B))

+

[
A+(q − 1)W(j−2)

q−2 (z) +
(
W(j−2)
q−1 (z)

)′
+A2

+(q − 1)(2)zW
(j−2)
q−3 (z)

+ 2A+(q − 1)z
(
W(j−2)
q−2 (z)

)′
+ z

(
W(j−2)
q−1 (z)

)′′]
(−B) (1− z)2 (4.7)

for j ≥ 3 and d(j + 2)/2e ≤ q ≤ 2j. Subject to initial values on quantities
W(1)
· and W(2)

· .
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1. Normalization

t∑
p=0

A(j)
p (t) = δj,0 . (4.8)

2. Stationary state

lim
t→∞

ft(n) =

(
N

n

)
(a+

b )(n)(a−b )(N−n)

(a+

b + a−
b )(N)

. (4.9)

We plot the solution (4.3) in Fig. 1 and the time-evolution of the distri-
bution in Fig. 2.

Fig. 1. The leading order along with the higher order terms in the distribution of
the number of agents ft(n). Here, we took t = 30, N = 40 and (A+, A−, B) =

(0.3, 0.2, 0.2).
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Fig. 2. (Color online) Top: The agent distribution ft(n) from equation (4.3) as a
function of time t. Here, for each value of N , we take t = N/2, N, 3/2N, 2N

(from left to right: violet, blue, green, yellow and red). The model parameters are
(A+, A−, B) = (0.3, 0.2, 0.2) as before. Bottom: The distance between the current
distribution and the steady state (the coloring as before except for the red which
is missing).

Proof outline

1. Insert Ansatz (4.3) into master equation (4.1) and work out recurrence
relations for modes A

(j)
p (t).

2. Take a Z-transform with respect to variable p obtaining recurrence
relation with differentiation with respect to z.

3. Solve the resulting recurrence equations for j = 0, 1, . . . and observe
the pattern in the solutions (as a function of j) and prove it by induc-
tion.

4. Invert the Z-transform.
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5. Mathematica file with proofs available upon request.
6. Stationary state obtained from detailed balance

π(n+ 1→ n) f(n+ 1) = π(n→ n+ 1) f(n) .

Time evolution of the distribution

Solution (large-t expansion)

ft(n) =
N∑

M=0

CM (1− EM )t X(M,N)
n , (4.10)

where EM := b(ε− + ε+ + (M − 1))M and

(ε− + ε+)(N)X(M,N)
n :=

n∑
m=0

(−1)n−m

(−ε−−M+1)(m)(ε−)(N−m)

(
−ε−−ε++1−M

n−m

)(
ε−+ε++M+N−1

m

)
=

(
N

n

)
ε
(N−n)
− (ε+ +M)(n−M)

(N −M + 1)(M)
P(M)(ε−, ε+) , (4.11)

where
(
P(M)(ε−, ε+)

)1
M=0

= (1,−n ε− + (N − n) ε+) .

We plot the solution (4.10) along with its large-N asymptotics in Fig. 3.

Proof outline

1. Rewrite master equation into ODE form

ft+1(n)− ft(n) = ∆n [π(n+1→ n) ft(n+ 1)−π(n→ n+ 1) ft(n)] .
(4.12)

2. Assume factorization ft(n) := T (E)(t)X(E)(n), then

T (E)(t) = T (0) (1 + E)t , (4.13)
E X̃(E)(z) = (1− z)

×
[
−Na++((a−+b(N−1))+(a+−b(N−1))z)

d

dz
−bz(1−z) d2

dz2

]
︸ ︷︷ ︸

Ĥz

×X̃(E)(z) , (4.14)

where X̃(E)(z) :=
N∑
n=0

X(E)(n)zn is the Z-transform of X(E)(n).
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Fig. 3. (Color online) The finite-N modes (dots/purple) along with the large-N
asymptotics (squares/blue) for M = 0, . . . , 5 from the top to the bottom, respec-
tively. I took N = 50 and (a+, a−, b) = (0.4, 0.6, 0.1). Note that ε± := a±/b.

3. Define ∆ := (b− a− − a+)2 − 4bE and solve ODE (4.14)

X̃(E)(z) ' (1− z)
−a−−a++b−

√
∆

2b

×F2,1

[
−a−+a++b−

√
∆

2b , −N + a−−a++b−
√
∆

2b
1− a−

b −N
; z

]
. (4.15)

4. Boundary conditions (probability flux conservation)

N∑
n=0

X(E)(n) = δE,0 ⇐⇒ E = −(a−+a++b(M−1))M ,

M ∈ N ∧M ≤ N (4.16)
=⇒

X̃(E)(z) = (1− z)M
(a−b )(N)

(a−b + a+

b )(N)

×F2,1

[ a+

b +M, −N +M
1− a−

b −N
; z

]
. (4.17)
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5. Invert Z-transform

(ε−+ε+)(N)X(E)(n) =

(
N

n

)
ε
(N−n)
− (ε++M)(n−M)

(N −M + 1)(M)
P(M)
n (ε−, ε+) ,

(4.18)

where (
P(p)
n (ε−, ε+)

)1

p=0
= (1,−n ε− + (N − n) ε+) (4.19)

and

P(M)
n (ε−, ε+) :=

M∧n∑
p=0

(−1)p
(
M

p

)
(N − n)(M−p) n(p) (ε− − n+N)(p)(ε+ + n)(M−p) .

(4.20)

B: The time evolution of the distribution of returns.
We generalize existing approaches [1–4] and model the excess demand of
fundamentalists, trend followers and speculators as log(pF

pt
), ṗtpt and ξt. Here,

pF = const is the “fundamental value” of the price and ξt is a random variable
with independent increments.
The Walrasian equilibrium yields

nTF
pt+∆t − pt

pt
= nF log

(
pF

pt

)
+ nNTξt . (4.21)

Define rt :=
pt+∆t−pt

pt
. In the following, we analyze limit cases.

Trend followers and fundamentalists only

Denote ε± := a±/b. Evolution of returns (take (4.21) and differentiate)

rt+∆t = rt

(
1− z

1− z

)∣∣∣∣
t

, (4.22)

where z := nF/N is the fraction of fundamentalists.
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The pdf of returns2

ρrt(x) =

1∫
0

δ

(
x−r0

(
1− z

1−z

) t
∆t

)
z−1+ε+(1−z)−1+ε−

B(ε−, ε+)︸ ︷︷ ︸
stationary agents′ pdf

dz

=

(
1−

(
x
r0

) 1
n

)ε+−1 (
2−

(
x
r0

) 1
n

)−ε−−ε+
B(ε−, ε+)

∣∣∣∣∣nr0

((
x
r0

) 1
n

)n−1
∣∣∣∣∣

, (4.23)

where n := t/∆t is odd.

The moments3

E [rt] = r0E

[(
1− z

1−z

)n]
=r0

n∑
p=0

(
n

p

)
(−1)p

B(ε+ + p, ε− − p)
B(ε+, ε−)

, (4.24)

E [rt] = r2
0E

[(
1− z

1−z

)2n
]

=r2
0

2n∑
p=0

(
2n

p

)
(−1)p

B(ε+ + p, ε− − p)
B(ε+, ε−)

. (4.25)

Speculators and fundamentalists only

Then the evolution of returns

rt ' log
pt+∆t

pt
=

1− z
z

∆ξt , (4.26)

where z := nF/N is the fraction of fundamentalists.

The pdf

ρrt(x) =
1∫
−1

1∫
0

δ

(
x− 1− z

z
η

)
z−1+ε+(1− z)−1+ε−

B(ε−, ε+)︸ ︷︷ ︸
agents′ pdf

υ∆ξt(η)︸ ︷︷ ︸
noise increment′ pdf

dzdη

2 For x negative, replace (x/r0)
1/n by −(|x|/r0)

1/n.
3 The 1st and the 2nd moments exist iff ε− > n and ε− > 2n, respectively.
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=

1∫
−1

sign(η)

xB(ε−, ε+)

(
η

η + x

)ε+ ( x

η + x

)ε−
1η x≥0 υ∆ξt(η)dη

=︸︷︷︸
υ∆ξt

(η)=p1η>0+q1η<0

|x|−ε+−1
2F1

(
ε+ + 1, ε− + ε+; ε+ + 2;− 1

|x|

)
(ε+ + 1)B(ε−, ε+)

× (p 1x≥0 + q 1x<0) . (4.27)

Let (µ̃j)
∞
j=1 denote the moments of ∆ξt.

The first moment (trend)4

µ1 := E [rt] = E

[
1− z
z

]
E [∆ξt] =

ε−

ε+ − 1
µ̃1 . (4.28)

The variance (volatility)5

E
[
(rt − µ1)2

]
=

(
ε−

ε+ − 1

)2 [
ε+ − 1

ε+ − 2

ε− + 1

ε−
µ̃2 − (µ̃1)2

]
. (4.29)

C: Parameter estimation.

— Method of moments:

1. Equate moments in (4.28), (4.29) to empirical moments.

2. Solve for parameters ε±.

3. From the moments compute get trend and volatility estimates.

4. Employ the Kelly criterion [5] and use the parameters in your
trading strategy.

— Method of maximum likelihood:

1. Find estimators of parameters ε± by maximizing the log-likeli-
hood–use expression (4.27) for the pdf of returns.

2. Find errors for parameters ε± by Taylor expanding log-likelihood
around maximum above.

3. Compare results to those from above.

4. If results match, proceed as in the last point above.
4 Exists for ε+ > 1 only.
5 Exists for ε+ > 2 only.
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5. Conclusions

— Basing firstly on types of trader’s behavior (competition between greed
and fear), then secondly on tendencies to change behavior (imitation,
herding) and, finally, on the auctioneer balancing supply and demand,
we described quantitatively the whole non-stationary distribution of
price returns.

— The above description is encapsulated in three interrelated models and
in a recipe to test the models with data and to estimate (calibrate)
the relevant model parameters.

— The result can (will) be used in a statistical arbitrage trading strategy.

— The analytical derivations and other relevant documentation (Mathe-
matica code) is available upon request.
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