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We discuss the beam-energy dependence of ratios of the first four cu-
mulants of the net-proton number, calculated using a phenomenologically
motivated model in which critical mode fluctuations couple to protons and
anti-protons. The model takes into account an impact of the underlying
O(4) criticality on the QCD phase diagram in the presence of a Z(2) critical
point. This allows us to capture qualitatively both the monotonic behavior
of the lowest-order ratio and the non-monotonic behavior of higher-order
ratios which are seen in the experimental data from the STAR Collabora-
tion. We also discuss the dependence of our results on the coupling strength
between the critical mode and the protons as well as the location of the
critical point.
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1. Introduction

One of the unresolved questions of QCD phenomenology concerns the
existence and location of the critical point (CP) in the T and µ plane.
Fluctuations of the critical mode (σ), although not directly measurable, are
expected to affect fluctuations of conserved charges [1, 2]. One of these
is the baryon number, whose fluctuations, experimentally, are probed by
net-proton number fluctuations. Preliminary results of the STAR Collab-
oration [3–5] show a non-monotonic beam energy dependence of the ratios
of higher order net-proton number cumulants. This data, however, is still
not fully interpreted and, therefore, effective models are important tools to
improve our understanding of these quantities.

One of such models was developed in [6] and allowed for the qualitative
description of the non-monotonic behavior of the C3/C2 and C4/C2 ratios.
However, it also exhibited the strong non-monotonic behavior of the C2/C1

ratio which is not observed experimentally. Recently, that model was modi-
fied [7] to take into account the impact of the underlying O(4) criticality on
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the scaling properties of the baryon number and chiral susceptibilities [8–10]
which allows for a better description of the C2/C1 ratio. We present ratios
of net-proton number cumulants obtained using the refined model and dis-
cuss their dependence on the coupling strength between critical mode and
(anti)protons and the location of the critical point.

2. Model setup

In this work, the regular contributions to net-proton number cumulants
are calculated using the hadron resonance gas (HRG) model in which the
QCD pressure is approximated by gas of non-interacting particles and their
resonances. To include critical mode fluctuations in that model, we follow
the approach employed in Ref. [6] and use the phenomenological relation for
the particle mass, as suggested by linear sigma models,

mi ∼ m0 + gσ , (1)

where i = p, p̄ stands for (anti)proton, m0 is a non-critical contribution
to the mass, and g is the coupling strength between (anti)protons and the
critical mode σ. Consequently, a distribution function becomes modified,
such that

fi = f0
i + f1

i δσ , (2)

where f1
i can be found in Refs. [6, 7].

The nth order cumulant of (anti)protons is given by

Cin = V T 3∂
n−1

(
ni/T

3
)

∂(µi/T )n−1

∣∣∣∣
T=const

, (3)

where ni is a number density and µi the corresponding chemical potential.
In this work, we consider the first four cumulants of the net-proton number,
Np−p̄ = Np−Np̄, which, after neglecting the contribution of resonances and
their decays, read [6]

Cn = Cpn + (−1)nC p̄n + (−1)n〈(V δσ)n〉c(mp)
n(Jp − Jp̄)n , (4)

where Cpn and C p̄n are, respectively, nth order proton and anti-proton cu-
mulants obtained within the HRG model 〈(V δσ)n〉c is nth cumulant of the
critical mode and Ji is the σ-independent factor.

Under the assumption that QCD and three-dimensional Ising model be-
long to the same universality class, the QCD order parameter close to the
CP can be identified with the magnetization, MI, and the critical mode
cumulants can be written as [6]

〈(V δσ)n〉c =

(
T

V H0

)n−1 ∂n−1MI

∂hn−1

∣∣∣∣
r

, (5)
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where r and h are the spin model reduced temperature and magnetic field,
which are mapped on the QCD temperature and baryon chemical potential.
A detailed discussion of the mapping as well as the magnetic equation of
state is presented in papers [6, 7].

In this approach, we find that (see Eq. (4))

Csing
2 ∝ ∂MI

∂h
∼ χchiral , (6)

where χchiral is the chiral susceptibility of QCD and the second relation fol-
lows from the universality. Such a relation, expected in the Z(2) universality
class, holds only very close to CP [8]. Further away, the traces of the tri-
critical point make the chiral susceptibility diverge stronger than the baryon
number one [8–10]. To take that effect into account, the model introduced
in Ref. [6] was modified [7]. The modification is based on the following rela-
tion obtained within the effective model calculations for O(4) and tricritical
points [9, 10]:

χµµ ' χreg
µµ + σ2χchiral , (7)

where χreg
µµ is the regular part of the baryon number susceptibility. Such a

form of the second cumulant can be obtained by replacing the proton mass
in Eq. (4) with the order parameter, gσ. After the modification, we find
that

C2 = Cp2 + C p̄2 + g2σ2〈(V δσ)n〉 (Jp − Jp̄)2 . (8)

We modify higher order cumulants accordingly:

C3 = Cp3 − C
p̄
3 − g

3σ3〈(V δσ)n〉(Jp − Jp̄)3 , (9)
C4 = Cp4 + C p̄4 + g4σ4〈(V δσ)n〉(Jp − Jp̄)4 . (10)

These quantities are volume-dependent, and hence it is convenient to con-
sider their ratios, in which this dependence cancels out

C2

C1
=
σ2

M
,

C3

C2
= Sσ ,

C4

C2
= κσ2 , (11)

where M is the mean, σ2 the variance, κ the kurtosis and S the skewness.
To compare model results with the experimental data on event-by-event
multiplicity fluctuations, we calculate the net-proton number cumulants at
the chemical freeze-out using the recently obtained parametrization [11] (see
the solid/blue line in Fig. 1).
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chem. FO: A. Andronic et al. (2018)
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Fig. 1. (Color online) The locations of QCD critical point considered in the current
study, together with the recently obtained chemical freeze-out curve [11]. The lines
of first order phase transitions are not shown.

3. Numerical results

To study the effect of the position of the critical point in the QCD phase
diagram on cumulant ratios, we consider three different locations of CP
which are shown in Fig. 1, where the distance from the freeze-out curve is
largest for CP1 and smallest for CP3. A detailed discussion of the remaining
model parameters and their values can be found in Refs. [6, 7].

The left column of Fig. 2 shows the net-proton number cumulant ratios
obtained for different locations of the critical point (as shown in Fig. 1) with a
fixed value of coupling, g = 5. A non-monotonic behavior of cumulant ratios
becomes more pronounced when the critical point is closer to the freeze-out
line and the deviation from the non-critical HRG baseline becomes larger for
higher order cumulant ratios. The right column of Fig. 2 shows the coupling
strength dependence of net-proton number cumulant ratios for CP3. When
compared to the STAR data [5], we find a qualitative agreement between
our model and experimental results for the C2/C1 and C4/C2 ratios. On
the other hand, the model result on the C3/C2 ratio does not follow the
systematics seen in the experimental data. The former are above the HRG
baseline, while the latter stay below.

Therefore, with the proper choice of parameters, our model allows to
describe some of the experimentally observed cumulant ratios. Especially,
the smooth dependence of C2/C1 as well as strong increase of C4/C2 at low
beam energies,

√
s < 20GeV, suggest that the QCD critical point may be

located close to the phenomenological freeze-out curve. In this case, the
C3/C2 ratio should be also above the non-critical baseline. However, this is
not seen in the experimental data and, therefore, it seems unlikely that the
QCD critical point is close to the freeze-out curve.
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Fig. 2. (Color online) Ratios of net-proton number cumulants calculated for the
fixed coupling g = 5 and for different locations of the QCD critical point, as shown
in Fig. 1, (left column) and for the fixed critical point location CP3 for different
values of the coupling strength g = 2, 3 and 5 (right column).

4. Conclusions

We studied ratios of net-proton number cumulants obtained within an ef-
fective model which takes into account the effect of the underlying O(4) crit-
icality. Model results were compared with the recent experimental data on
net-proton number fluctuations from the STAR Collaboration. Our model
allows to describe some of the experimentally observed features in the net-
proton number cumulant ratios. Particularly, smooth dependence of C2/C1
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and rise of C4/C2 at low beam energies suggest that the critical point may be
located close to the freeze-out curve. However, the experimentally observed
C3/C2 ratio does not follow the behavior expected from such a scenario.

Therefore, it seems unlikely that the critical point is located close to
the phenomenological freeze-out curve. However, this statement requires
further investigation due to current uncertainties on both theoretical as well
as experimental sides.
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