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THEORY AND PHENOMENOLOGY OF TRANSVERSE
MOMENTUM DEPENDENT GLUON DISTRIBUTIONS
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We overview selected aspects of Transverse Momentum Dependent
(TMD) gluon distributions in the high-energy limit. In particular, we dis-
cuss a suitable factorization formalism that allows to obtain phenomeno-
logical results for forward jet production processes at the LHC.
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1. Introduction

Unlike in Quantum Electrodynamics, where at present the field theoret-
ical computations approach incredible multi-digit precision, the calculations
in the fundamental theory of strong interactions — Quantum Chromody-
namics (QCD) — are nowhere near. QCD is a nonlinear non-Abelian theory
exhibiting the color confinement — i.e., the physical states of the theory
are not quarks and gluons carrying the color charge, but rather hadrons,
which are color-neutral. Although complicated, the situation is not hope-
less, thanks to the property of asymptotic freedom. When hadrons are
probed at very small space-time volumes (i.e., via highly energetic probes),
quarks and gluons interact weakly and one can apply perturbation theory.
More properly, thanks to factorization theorems, one can separate the per-
turbatively calculable component, a scattering amplitude, from the hadronic
bound state, which, for certain processes, can be parameterized in terms of
universal parton distribution function (PDF) (see e.g., [1] for a review). The
most standard is the collinear factorization theorem, where the transverse
motion of the partons in a hadron is neglected in the hard scattering ampli-
tude and integrated over in the PDF. However, in experiments conducted
for instance at the LHC, there are few observables to which the collinear
∗ Presented at the 45th Congress of Polish Physicists, Kraków, September 13–18, 2019.
† The author was supported by the National Science Centre, Poland (NCN), grant
DEC-2017/27/B/ST2/01985.

(667)



668 P. Kotko

factorization is directly applicable. The reason is that it requires a single
asymptotically large energy scale, such as transverse momenta of very ener-
getic jets of particles. In practice, we often deal with at least two large but
very different scales.

In addition, the center-of-mass energy of colliding systems successively
grows: at the LHC Run 2, it has reached already 13TeV. This introduces a
potential need for a resummation to all orders in the strong coupling con-
stant of the contributions enhanced at high energies — so-called small-x log-
arithms (see e.g., [2] for a review of the high-energy QCD). This is a serious
issue especially for jets produced in the forward rapidity region. The ap-
propriate resummation is achieved via the Balitsky–Fadin–Kuraev–Lipatov
(BFKL) equation in the moderate energy regime, or the Balitsky–JIMWLK
(Balitsky–Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner) in
the regime, where gluon density may become very large approaching the
so-called saturated state, e.g., in heavy-ion collisions. There exists an effec-
tive theory of QCD at high energy taking these phenomena into account:
the so-called Color Glass Condensate (CGC) (see e.g., [3]). An essential
property of a hadron in the saturated state, according to the CGC theory,
is that gluons have large transverse momenta, of the order of the so-called
saturation scale Qs. These momenta must be explicitly taken into account
— not integrated over and hidden inside an unknown function, like in the
collinear factorization. This feature resembles a more sophisticated and
theoretically more challenging Transverse Momentum Dependent (TMD)
factorization [1], where hadrons are parameterized in terms of transverse
momentum dependent PDFs (TMD PDFs). In CGC, however, the notion of
gluon distributions and factorization is not explicitly present.

In recent years, the connection of the CGC description of high-energy
processes and the TMD PDFs (more specifically gluon PDFs that domi-
nate at high energies) has been intensively studied. It turns out that both
formalisms can be combined to construct a new factorization-like approach
valid at high energies, which turns out to be very useful in carrying phe-
nomenological calculations for the LHC processes. In the following, we shall
review some aspects of TMD gluon distributions (Section 2). Next, in Sec-
tion 3, we shall briefly summarize the new factorization formalism. Finally,
in Section 4, we will demonstrate example applications to the LHC physics.

2. TMD gluon distributions at small-x

Field theoretical definition of unpolarized TMD gluon distribution in-
volves hadronic matrix elements of bilocal gluon field operator

F (x, kT) = 2

∫
dξ−d2ξT
(2π)3P+

e ixP
+ξ−−i~kT·~ξT 〈P |F i+a (ξ) F i+a (0) |P 〉 , (1)
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where P is the momentum of a hadron and F is gluon field strength op-
erator. We use the light-cone basis, vµ = v+nµ− + v−nµ+ + vµT for any four
vector v, with n± = (1, 0, 0,∓1)/

√
2. In (1) the gluon fields are separated on

the light-cone along n+ direction and also in the transverse direction. The
Fourier transform with respect to the longitudinal displacement ξ− gives the
longitudinal fraction of hadron momentum carried by a gluon, x, while its
transverse momentum is conjugate to the transverse displacement ξT. The
above definition is not complete. We need to insert gauge links to make
the bilocal operator gauge-invariant. While any gauge link path would en-
sure the gauge invariance, it turns out that the form of the gauge link is
determined by the factorization. Namely, they resum gluons collinear to the
hadron, emitted in the hard amplitude. A general method to find the gauge
link structure was given in [4].

Unlike in the collinear factorization, where the gluon fields are displaced
only along the light-cone direction, here, the transverse displacement renders
several possible gauge link paths, including loops. In consequence, the TMD
gluon distributions are not universal. However, a TMD gluon distribution for
any process is given as a linear combination of the base distributions given in
Table I, [5]. There, F̂ = Fat

a and the gauge links and loops are defined as:
U [±] = U(0,±∞; 0T)U(±∞, ξ−; ξT), U [�] = U [+]U [−]† = U [−]U [+]†, where
U(a, b;xT) = P exp{ig

∫ b
a dx

−A+
a (x

−, xT)t
a}.

So far, the discussion was general and not limited to the high-energy
limit. Formally, such a limit is taken simply by setting x→ 0 in the operator
definitions. It turns out that by trading the hadronic states to average over
target color configurations used in the CGC theory, one can recover the
CGC correlators of infinite Wilson lines [6]. Thanks to this identification, it
is possible to use CGC methods to constraint the TMD gluon distributions
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Fig. 1. TMD gluon distributions in the large Nc limit [7].
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at small-x. In particular, in the large-Nc limit, all leading distributions can
be calculated from F (1)

qg , which in turn can be fitted to experimental data.
The result of such a procedure is shown in Fig. 1 [7].

TABLE I

Base TMD gluon distributions for arbitrary multiparticle process.

F(1)
qg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]
|P 〉

F(2)
qg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |
Tr
[
U [�]

]
Nc

Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]
|P 〉

F(3)
qg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [�]U [+]

]
|P 〉

F(1)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |
Tr
[
U [�]†]
Nc

Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]
|P 〉

F(2)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 1

Nc
〈P |Tr

[
F̂ i+ (ξ)U [�]†

]
Tr
[
F̂ i+ (0)U [�]

]
|P 〉

F(3)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]
|P 〉

F(4)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [−]

]
|P 〉

F(5)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT 〈P |Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [�]U [+]

]
|P 〉

F(6)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT

×〈P |
Tr
[
U [�]

]
Nc

Tr
[
U [�]†]
Nc

Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]
|P 〉

F(7)
gg (x, kT) = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT·~ξT

×〈P |
Tr
[
U [�]

]
Nc

Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [+]

]
|P 〉

3. Small-x improved TMD factorization (ITMD)

Although the CGC theory can, in principle, give a complete description
of the scattering processes in the high-energy (eikonal) limit, it becomes
overwhelmingly complicated for multiparticle final states. Indeed, it contains
both the genuine multi-parton interactions and power corrections to the
leading twist operators, with saturation scale being comparable to other
scales. However, in the context of the LHC jet phenomenology, the largest
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scale is definitely set by the jet transverse momenta: µ� Qs. In that regime,
one can use a very elegant factorization formula resembling a generalized
TMD factorization. For dijets, it was first proposed in [6] to leading power
and later extended beyond that in [8]. Recently, it was proved that the last
approach corresponds to exact resummation of all kinematic twists in the
CGC theory [9]. The corresponding factorization formula for forward dijets
in proton–proton or proton–nucleus collisions has the following form:

dσAB→2j+X

d2qTd2kTdy1dy2
∼
∑
a,c,d

xBfa/p (xB, µ)
2∑
i=1

K
(i)
ag∗→cdΦ

(i)
ag→cd (xA, kT, µ) , (2)

where A is a hadron probed at small-x (proton or nucleus), while B corre-
sponds to a proton probed at rather large-x (this asymmetry follows from
the requirement of forward jets). Above, fa/B is the collinear PDF for parton
a inside a proton, K(i)

ag∗→cd are off-shell hard factors for partonic sub-process

ag → cd, and Φ(i)
ag→cd are small-x TMD gluon distributions. Further, p1, p2

are the momenta of jets, y1, y2 their rapidity and ~qT = ~pT1 + ~pT1 is the
transverse momentum imbalance of the jets. The explicit expressions for
the off-shell hard factors as well as the TMD gluon distributions (given as
linear combinations of the base distributions) are given in [8].

4. Forward jet production at the LHC

Let us now look at a particular application of the ITMD formalism de-
scribed in the preceding section. In Fig. 2, we show a comparison of theo-

Fig. 2. (Color online) Comparison of theory calculations using ITMD formula and
experimental ATLAS data [10] (shifted as described in [11]) for dijet azimuthal
correlations. Left plot: linear scale (arbitrary units), right plot: log scale.
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retical calculations (light gray/red and dark gray/blue bands) versus exper-
imental ATLAS data [10] for dijet azimuthal correlation in p–p and p–Pb
collisions. Since no cross-section measurement was performed, we focus on
shapes of the distributions. To highlight the difference in tails of the dis-
tributions, the data and calculations have been shifted so that the p–p and
p–Pb data match in the first bin. We observe nice description of the shapes,
provided in addition to the factorization formula (2) we used the Sudakov
resummation, necessary due to the presence of the hard scale give by the
transverse momenta of jets. For further details, see [11].

5. Summary

Although a proliferation of TMD gluon distributions might be viewed
as an issue by orthodox collinear factorization theorists, it is an inherent
and extremely interesting property of QCD. While the universality is lost
in traditional sense, there is only a finite number of base distributions that
build up a distribution for any process in a predictable way. Moreover,
these proliferated distributions are a necessary ingredient of the description
of processes occurring at high energies, in consistence with the CGC theory.
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