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In this paper, I discuss contemporary research on constituents of the
nucleon, making up atomic nuclei and giving mass to almost entire visible
matter. These constituents, quarks and gluons, interact strongly and this
interaction is described by quantum chromodynamics (QCD), one of the
pillars of the Standard Model of elementary particles. QCD is much more
complicated than e.g., quantum electrodynamics and several aspects can be
investigated from first principles only via numerical calculations, by formu-
lating it on a discretized spacetime grid, the lattice. The huge complexity
of the problem causes it to require advanced tools and computing power
offered by the world’s most powerful supercomputers. I discuss how QCD
is formulated on the lattice such that it can be tackled on such machines,
what we have learned so far and what are the directions of on-going and
future research on nucleon structure from the lattice QCD.
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1. Introduction

Quantum chromodynamics (QCD) is the accepted theory of the strong
interaction, one of the four fundamental interactions in nature. The strong
interaction is responsible for several essential features of the world, most
notably for binding nucleons into atomic nuclei and, at an even more funda-
mental level, for binding quarks and gluons into nucleons and other hadrons.
Nucleons, i.e., protons and neutrons, are responsible for over 99% of the
mass of the visible Universe and their mass comes almost exclusively from
the strong interaction. The masses of quarks sum up to only around 10 MeV
out of the approx. 940 MeV rest mass of the nucleon and the remainder of the
nucleon mass comes from the dynamical QCD interactions between quarks
and gluons.
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QCD is formally similar to the prototype quantum field theory describ-
ing the electromagnetic interaction, quantum electrodynamics (QED). They
are both gauge field theories, with fundamental fermions interacting via
exchange of gauge bosons, gluons or photons, respectively. The crucial dif-
ference between QCD and QED, however, comes from the structure of the
gauge group, SU(3) vs. U(1). The former is non-Abelian and this leads to
a crucial new feature of QCD with respect to QED — the self-interaction of
gauge bosons. This has far-reaching consequences, in particular, it causes
a strong dependence of the interaction coupling on the energy scale, the
so-called running. While for QED, the coupling constant, called the fine
structure constant, is almost unchanged over several order of magnitudes of
energy, α ≈ 1/137, in QCD the coupling runs from αs = O(0.118) at the
Z boson mass scale (≈ 91 GeV) up to O(1) at low energies, of the order
of 200–300 MeV. QCD at high energy evinces the celebrated property of
asymptotic freedom [1, 2], i.e., the asymptotic weakening of the interaction
strength with increasing energy. On the other hand, at low energies, con-
finement sets in and quarks and gluons are strongly bound together into
hadrons. The coupling strength values of QED and QCD have immediate
methodological consequences. The smallness of the fine structure constant
implies that perturbation theory (PT) is valid for all energy scales relevant
to current phenomenology. In turn, PT can work in QCD only at relatively
large energies, more than at least 2 GeV. For lower energies, non-perturbative
methods are needed. These can take the form of phenomenological models,
which have had several successes in describing various features of the strong
interaction. However, for a truly first-principle description, there is basi-
cally no alternative to the lattice approach. It was first proposed in 1974 by
Wilson [3], who showed how to quantize a gauge field theory on a discrete
lattice, preserving exactly the gauge invariance.

In the remainder of the paper, I will discuss the lattice formulation of
QCD and its features in Sec. 2. In Sec. 3, I will briefly report the recent
progress in lattice hadron structure computations, with special attention to
computations of the x-dependence of partonic distributions. Section 4 will
summarize and shortly discuss future prospects for this field.

2. Lattice QCD (LQCD)

2.1. Generalities of the lattice approach

QCD as a part of the Standard Model is formulated in continuous four-
dimensional Minkowski spacetime. In the path integral formalism, observ-
ables are expressed as functional integrals over all possible fermionic and
gluonic field configurations. To be amenable to numerics, these formally
infinite-dimensional integrals need to be regularized and this is achieved by
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discretization on a spacetime grid. However, one more step is necessary
to perform numerical computations. The Minkowski spacetime integrals
are weighted with a highly oscillatory factor exp(iS), where S is the QCD
action. These factors effectively prohibit numerical probing, and the un-
avoidable remedy is to change the signature of spacetime from Minkowski to
Euclidean, by performing the so-called Wick rotation. In this way, the time
becomes imaginary and the exponential factor in the path integral takes the
form of exp(−S), formally a Boltzmann factor of a statistical–mechanical
system. For a wide class of observables, the Euclidean expectation values
coincide with Minkowski ones. However, notable exceptions are quantities
involving the real time that become practically inaccessible in the Euclidean
LQCD. In particular, this involves observables defined on the light cone, rel-
evant for investigating partonic structure of hadrons. A way of overcoming
this limitation will be discussed in the next section.

The key property in Wilson’s formulation [3] is that gauge invariance
is preserved at a finite lattice spacing. This is achieved by taking the link
variables to be SU(3) group-valued, instead of algebra-valued. In this way,
there are two types of gauge-invariant objects on the lattice — quark fields
connected by a path of gauge links or closed paths of gauge links (Wilson
loops). The QCD action is constructed from such gauge-invariant objects
and the QCD partition function, as well as any observable, can be expressed
as a finite-dimensional path integral and evaluated numerically. The lattice
provides regularization both in the ultraviolet (UV) and in the infrared (IR),
with UV and IR regulators provided by the finite lattice spacing and the
finite volume.

The typical number of lattice sites in an LQCD simulation is 32–128
in each direction. Thus, even though observables evaluated in LQCD are
finite-dimensional, having four spacetime directions, the integral has 107–109
dimensions. Clearly, such an integral can only be evaluated with stochastic
methods, in particular variants of Monte Carlo (MC) sampling. In MCmeth-
ods, one generates a Markov chain of field configurations. In principle, both
gluon and fermion fields need to be sampled. However, the former are ana-
lytically integrated out, yielding a determinant involving gauge fields. Thus,
the MCMarkov chain consists of a sequence of gauge fields only. Even so, the
configuration space is inaccessibly large and it is essential to only generate
gauge fields that are relevant at a given set of simulation parameters. This
is called importance sampling and in practice allows to evaluate observables
with typically between 100 and 10000 independent field configurations. Over
the years, several MC algorithms have been thoroughly investigated from the
point of view of their suitability for LQCD. The simplest algorithms, such
as the Metropolis algorithm, cannot be effective for LQCD, since they in-
volve only local updates of field variables. The method that is currently
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most commonly used in LQCD is the so-called Hybrid Monte Carlo (HMC)
algorithm [4]. It combines a molecular dynamics (MD) evolution with a
Metropolis accept–reject step. One introduces fictitious momenta conjugate
to field variables and constructs a Hamiltonian governing the evolution of
the system in MD time. Simulating this evolution requires solving a system
of first-order differential equations (Hamilton’s equations). To sample the
path integral faithfully, one needs to accurately solve these equations. In
order to do it with a practically large step size (to make sure that the field
configurations are sufficiently far away from each other and can be consid-
ered independent), the additional Metropolis step is introduced. The HMC
algorithm has been subject to many refinements over the years and also op-
timized for the different ways one can discretize the continuum fields. It is
important to note that MC simulations are restricted to cases where a prob-
ability measure can be defined to probe the relevant distribution. Luckily,
this is the case for QCD at zero baryon density. In the case of a non-zero
chemical potential, this is no longer true. For small baryon densities, there
are rather straightforward ways of taming this sign problem, but the prob-
lem becomes severe at larger chemical potentials. There are large efforts in
the community to find methods that can overcome this issue, for a review
see e.g., Ref. [5].

For more details about the lattice formulation of QCD and other gauge
theories, we refer to the excellent textbooks [6–8].

2.2. Brief history of LQCD

LQCD simulations are one of the most demanding areas of science in
terms of the required computational power. The insufficient computing
power was a major hindrance in the early years after Wilson’s proposal
and it was initially believed that it may take 30–40 years before they be-
come practical. However, already in 1980, Creutz reported first simulations
[9], not yet of QCD, but of a simpler SU(2) gauge theory without fermions
(so-called pure gauge SU(2) theory). Working with lattices consisting of
4–10 sites in each direction, Creutz managed to show numerical evidence for
both confinement and asymptotic freedom in this theory. Soon afterwards,
this work was extended to the SU(3) group and with increasing computa-
tional power several aspects of QCD could be explored. This was still for
the pure gauge theory case, also called the quenched approximation, which
amounts to the lack of dynamics of quark–antiquark pairs. This dynamics
is encoded in the determinant resulting from analytical integration of the
fermion fields and the computing power of the 1980s and 1990s was yet not
enough to tackle this determinant. The quenched approximation is uncon-
trolled, in the sense that it is not possible to reach the unquenched results
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without actually simulating the determinant. Nevertheless, it was commonly
believed that this approximation is not too severe and amounts to numerical
effects of the order of 10% in most observables. This was seen e.g., in the
computations of the hadron spectrum that yielded particle masses in rea-
sonable agreement with the ones found experimentally or differing by just a
few percent. With further increasing computer power and algorithmic de-
velopments, the inclusion of the fermionic determinant was possible towards
the end of the 1990s and an era of so-called dynamical simulations began.
At first, basically during the entire 2000s decade, dynamical light quarks
were included at heavier than physical masses. Since the simulation cost
strongly depends on the quark masses, first dynamical simulations included
light quarks corresponding to pion masses typically in the range from 300
to 600 MeV. Results at the physical quark masses could then be obtained
by an extrapolation in the light-quark mass, guided by chiral perturbation
theory [10]. In the next decade, dynamical simulations at physical quark
masses were started (at the so-called physical point). This again resulted
from the increasing computing power, but a crucial ingredient were also algo-
rithmic improvements. Actually, without these algorithmic improvements,
even today physical point simulations would be prohibitively expensive. The
algorithms of 2000 s exhibited very bad scaling with decreasing pion mass
and the improvement of this scaling was essential.

2.3. Systematic effects in LQCD computations

As of today, LQCD has become a mature field allowing for reliable quan-
titative investigation of many aspects of QCD. Its main strength is the pos-
sibility to control all conceivable systematic effects. We shortly discuss them
here point by point.

2.3.1. Discretization of the action and cut-off effects

An obvious systematic effect comes from the fact that simulations are
necessarily performed at a non-zero lattice spacing. Thus, lattice results
are always subject to discretization effects. Nevertheless, this uncertainty
can be fully controlled by performing simulations at a few values of the lat-
tice spacing, preferably at least three. The leading cut-off effects depend
on the used discretization of fermionic and gluonic fields. For the latter,
three main discretizations are used (Wilson plaquette, tree-level Symanzik
improved and Iwasaki actions) and they all exhibit leading cut-off effects
at O(a2), with practical differences between them being not very large. In
the fermionic sector, in turn, several conceptually different discretizations
are used. The naive discretization of the covariant derivative leads to the
so-called doubling problem — instead of e.g., 2 desired fermion flavors, one
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simulates 2d of them, with d being the dimensionality of spacetime. Thus,
it is mandatory to remove the doubler modes. The original way proposed
by Wilson [3] consists in adding a second-derivative term to the fermionic
action. This so-called Wilson term gives a large mass to the doubler modes,
thus quenching their dynamics at a finite lattice spacing and decoupling
them altogether in the continuum limit. The price to pay for removing
doublers is that the Wilson term, being effectively a mass term, explicitly
breaks chiral symmetry. The latter is restored in the continuum limit and
in the zero quark mass limit, but at a finite lattice spacing gives rise to lead-
ing cut-off effects at O(a). Two main improvements of Wilson fermions are
commonly used. One of them is to add a specific term (clover term) to the
fermionic action. This results in the O(a)-improvement of the action, but
observables need to be separately improved by adding further improvement
coefficients. Another way to improve Wilson fermions is to add the so-called
twisted mass term [11]. By tuning just one parameter in the action, one
can then obtain automatic O(a)-improvement of physical observables. The
twisted mass fermionic action is used by the Extended Twisted Mass Col-
laboration (ETMC), whose results on the nucleon structure will be shortly
discussed in the next section. Both clover and twisted mass fermions ex-
plicitly break chiral symmetry by the inclusion of the Wilson term. Ways of
preserving chiral symmetry have been proposed [12, 13] and used to some ex-
tent, but they are significantly more computer-time expensive. Apart from
Wilson-type and overlap fermions, other popular discretizations are Kogut–
Susskind (staggered) fermions [14] and domain wall fermions [15]. All of the
mentioned fermionic discretizations, apart from unimproved Wilson quarks,
exhibit O(a2) scaling towards the continuum limit. Given their different
advantages and disadvantages, they may be more or less suitable for cer-
tain applications, but in general, allow different groups to cross-check one
another’s results — the results at a finite lattice spacing may differ, but
after taking the continuum limit (and eliminating other sources of system-
atic effects, see below), they should agree, i.e., correspond to the desired
continuum theory of QCD. In practice, the continuum extrapolations are
performed using 3–5 values of the lattice spacing, ranging from 0.04–0.06
fm to 0.1–0.15 fm. Larger lattice spacings cannot be usually used, since
higher-order cut-off effects may become dominating and the extrapolation
may become unreliable.

2.3.2. Finite volume effects (FVE)

Lattice simulations are, obviously, also performed in a finite volume.
The size of FVE is usually related to the mass of the lightest particle in the
spectrum — the pion. The relevant finite size parameter is the product of
the pion mass, mπ, and the lattice extent, L, and FVE are exponentially
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suppressed by a factor proportional to exp(−mπL). Thus, they become of
O(1%) if mπL & 4. Nevertheless, even if mπL is rather large, it is good
practice to explicitly check for the size of FVE by performing computations
at 2 or 3 physical lattice extents.

2.3.3. Values of quark masses and the number of active quark flavors

As discussed above, for many years simulations have been performed at
non-physical values of the quark masses, in particular of light quarks. In
this way, making contact to real-world QCD required an extrapolation to
the physical point or to the chiral limit. For many quantities, such an extrap-
olation could be guided by analytical predictions obtained in the framework
of chiral perturbation theory [10]. Still, such an analytical guidance is not
possible or reliable for certain observables and thus, it is preferable to avoid
the chiral extrapolation by simulating directly at the physical point. Con-
cerning heavier quarks, their influence on the dynamics of the sea is limited.
For most observables, the difference of results obtained with only 2 lightest
active flavors and with dynamical strange quarks is smaller than the typi-
cal statistical and systematic precision. Nevertheless, since inclusion of the
strange and charm quarks is technically and computationally not very de-
manding, it is preferred to include these quarks in the simulations. These
heavier quarks are usually taken at their physical mass values.

2.3.4. Isospin breaking

In most LQCD applications, the two lightest quarks are taken as de-
generate. This approximation is well-justified if the overall precision of the
calculation is much worse than the expected effects of different masses and
electric charges of the up and down quarks e.g., O(0.2%) for the mass differ-
ence between the proton and the neutron. In applications discussed in the
next section, where the currently aimed precision is at the few percent level,
the light quarks can be safely assumed to be degenerate. However, there
exist LQCD computations where the total error becomes of the order of ex-
pected isospin breaking effects. Taking them into account is feasible, but
highly non-trivial, since the quarks not only need to have different masses,
but also electromagnetic corrections resulting from their different electric
charges have to be incorporated.

2.3.5. Renormalization

The lattice provides IR and UV regularizations, ensuring finite results
are obtained in numerical calculations. However, for several observables,
renormalization of bare lattice results is needed. The most common renor-
malization scheme in phenomenology is the minimal subtraction scheme of
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dimensional regularization. Obviously, this scheme cannot be directly used
on the lattice, which is limited to an integer number of dimensions. Instead,
several non-perturbative renormalization schemes have been proposed for
the lattice. The most popular are variants of the regularization-independent
momentum subtraction scheme (RI-MOM) [16]. In this momentum-space
scheme, one computes amputated vertex functions of the operator that is
to be renormalized and comparing them to their tree-level values gives the
renormalization factor of the operator. Other non-perturbative schemes that
have been used on the lattice are the Schrödinger functional [17] and the
coordinate space method [18]. Since it is usually desirable that the final
results are given in the MS scheme, a necessary ingredient is the conver-
sion between the intermediate scheme and MS. The matching factor can
be computed in continuum perturbation theory. Note that this may lead to
truncation effects as an additional source of systematics in the final result
and that they need to be quantified and controlled.

2.3.6. Other systematic effects

Apart from the effects mentioned above, other ones usually can be named.
Naturally, they depend on the quantity of interest and may be significant in
some observables and totally negligible in others. Moreover, the influence
of systematics depends also on the desired precision — studies aiming at
per mille precision need to take into account sources of systematic effects
that can be safely ignored in analyses aiming at 10% or 20%. It is worth to
emphasize that the key feature of LQCD is that, in principle, all systemat-
ics can be controlled. In some cases, this may require spending very large
computational resources, which is also usually required to have small statis-
tical errors. However, after this is done, one has the unique opportunity of
having an ab initio result, a direct first-principle prediction from the QCD
Lagrangian.

3. Nucleon structure from LQCD

One of the research areas where LQCD has provided valuable insights is
the internal structure of hadrons, in particular of the nucleon. In particular,
one of standard LQCD applications have for many years been computa-
tions of nucleon charges, electromagnetic form factors, quark momentum
fractions and other moments of parton distribution functions (PDFs) and
generalized parton distributions (GPDs) [19]. These quantities can also be
used to conclude about the decomposition of the nucleon spin into con-
tributions from quark angular momentum, quark spin and gluon angular
momentum, see Ref. [20] for a state-of-the-art computation. In general,
the lattice calculation of such observables requires the evaluation of the so-
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called quark-connected and disconnected diagrams. The latter are much
more noisy and require significantly larger computational resources and spe-
cial techniques. Hence, the best precision is obtained for flavor non-singlet
quantities, such as the combination u–d, in which the disconnected contribu-
tions cancel for degenerate light quarks. To obtain individual contributions
of different quark flavors, computations of disconnected insertions are un-
avoidable. Nevertheless, there has been much progress in this area recently
and reliable extractions are already available.

A relatively new area in lattice hadron structure is to calculate the full
x-dependence of PDFs. For many years, it has been considered impossible,
since PDFs are defined on the light cone and, as we have mentioned above,
LQCD works in Euclidean spacetime that is unable to probe light-cone cor-
relations. In principle, one can compute several moments of PDFs that are
given as matrix elements of local operators and reconstruct the PDFs from
these moments. However, it is, in practice, impossible to go beyond the third
moment. Higher moments suffer from very unfavorable signal-to-noise ratio
and moreover, inevitable power-divergent mixings with lower-dimensional
operators appear. Thus, the lattice can offer reliable results basically for the
lowest 2 moments, which is clearly not enough to reconstruct the full dis-
tributions. Proposals how to access the full x-dependence were put up, but
not much progress was achieved until the seminal proposal of Ji in 2013 [21]
to compute so-called quasi-distributions, in which one probes spatial cor-
relations between boosted nucleon states. Such quasi-distributions can be
shown to share the same IR properties as their light-cone counterparts and
thus, if the nucleon boost is large enough, can be perturbatively matched to
them to account for the difference in the UV region [22]. Ji’s proposal has
been subject to intense theoretical and numerical studies, see Refs. [23–28]
for efforts by the ETMC and Ref. [29] for a broad review of the community
efforts for the quasi-distribution approach, as well as alternative approaches
to PDFs from the lattice.

As an example of these lattice investigations, we show the PDFs obtained
by ETMC in a recent effort [26–28]. Simulations have been performed us-
ing twisted mass fermions and Iwasaki gluons on a single ensemble of gauge
field configurations with a lattice spacing of a ≈ 0.094 fm and lattice volume
483 × 96, with 2 dynamical light quarks of physical masses. Bare matrix el-
ements were obtained for all 3 cases of PDFs (unpolarized, longitudinally
polarized (helicity) and transversely polarized (transversity)), for the flavor
non-singlet u–d combination. They were subject to non-perturbative renor-
malization in the RI-MOM scheme and matched to light-cone distributions.
The influence of matching is illustrated in the upper left plot of Fig. 1. As
can be seen, the quasi-distribution at the nucleon boost of 10π/L ≈ 1.4 GeV
is yet far away from the typical shape of PDFs. Apart from the matching,
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the effect of nucleon mass corrections is also shown that turns out to be
negligible at this level of precision. In the upper right plot of Fig. 1, a com-
parison to selected phenomenological distributions is shown. Likewise, the
lower plots illustrate such comparisons for helicity and transversity PDFs.
For the polarized PDFs, we observe agreement with the phenomenological
determinations for a range of x values. Unpolarized PDFs qualitatively fol-
low the light-cone PDFs, but no quantitative agreement is seen yet. The
reason for this is simple to explain according to the discussion of the previ-
ous section. Our computation has been performed with only one ensemble
of configurations, in particular at a single lattice spacing, and is, hence, sub-
ject to systematic effects that are not yet quantified. The good agreement
at the qualitative level is promising and is a milestone in lattice computa-
tions of PDFs. However, significantly more work is needed to investigate the
systematics and large computational resources will be needed for this, e.g.,
to perform the simulations at finer lattice spacings and extrapolate out cut-
off effects. The current work in progress indeed suggests that discretization
effects are responsible for a large part of the difference between the lattice-
extracted distributions in Fig. 1 and the phenomenological ones. Thus, full

Fig. 1. Upper left: unpolarized quasi-PDF (q̃) and PDF after matching (q) and
nucleon mass corrections (NMCs). Upper right: unpolarized PDF from the lattice
compared to selected phenomenological distributions. Lower left/right: the same
for helicity/transversity PDFs. Source: Ref. [28], article published under the terms
of the Creative Commons Attribution 4.0 International license.
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quantitative comparisons with phenomenology will only be possible after
careful investigation of all sources of systematics that are relevant at this
level of precision. It is interesting to note that, as of now, the statistical pre-
cision that can be obtained on the lattice for the transversity PDF is much
better than the one obtained in global fits. The latter can be improved by
including a lattice determination of the tensor charge, as illustrated in the
lower right plot of Fig. 1, but it is conceivable that, having fully quantified
lattice systematics, the most accurate determinations of transversity PDFs
will come in the future from the lattice. In general, it is also plausible that
the lattice can help in constraining also the better-known unpolarized and
helicity PDFs, at least in some regions of x. For a recent investigation of
the possible impact of lattice on PDFs extractions, see Ref. [30]. Apart from
computations of PDFs, lattice is starting to extract also the x-dependence
of GPDs, see Ref. [31] for first exploratory results for the nucleon. Proposals
how to handle transverse momentum-dependent distributions (TMDs) have
also been put up. With access to these quantities, prospects for a deeper
understanding of nucleon structure in the next years are becoming a reality.

4. Summary

The lattice QCD has achieved enormous progress since the seminal pro-
posal of Wilson more than 45 years ago. The progress can be attributed to
a comparable extent to both the huge development of computers and the
improvement of simulation algorithms and computational methods. This
has led to reliable first-principle investigations of different aspects of QCD.
For some of them, LQCD has already entered a precision era, with calcu-
lations aiming at per-mille level total uncertainty. However, there are also
more difficult computations, such as the ones probing the internal structure
of the nucleon. Many of these are still at the exploratory level and new
quantities are being calculated, which were not so long ago thought to be
practically inaccessible. We have exemplified this thread of research with
the recent computation of the x-dependence of PDFs by the ETM Collabo-
ration. Finally, there are some observables where no viable lattice methods
exist for QCD, such as quantities at a large baryon chemical potential that
encounter the sign problem in MC simulations or real-time dynamics that
cannot be accessed in Euclidean spacetime. Thus, the future progress in
LQCD will concentrate on increasing precision of on-going computations,
but also on looking for further algorithmic improvements and on devising
new methods that can help to investigate aspects of QCD not attainable so
far. The constantly increasing computing power will help as well.
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