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We consider subdiffusion in a system which consists of two different me-
dia joined together. The media can be separated by a thin partially perme-
able membrane. Subdiffusion is described by partial differential equations
with the time derivative of fractional order. We present the procedure of
solving subdiffusion equations for two-layer system. The procedure can be
generalized into a multi-layered system.
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Normal and anomalous diffusions are often defined by the time evolution
of mean square displacement of a particle 〈(∆x)2(t)〉∼ tα. For 0<α<1 we
have subdiffusion, for normal diffusion there is α = 1, and when α > 1 we
have superdiffusion. In the following we consider normal diffusion and subd-
iffusion processes in a one-dimensional system. Subdiffusion is qualitatively
different from normal diffusion. This process occurs in media in which a
particle random walk (Brownian motion) is hindered due to their complex
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internal structure. Subdiffusion can occur in porous media, gels, and biolog-
ical membranes [1–3]. Within the Continuous Time Random Walk model,
in subdiffusion medium, the mean waiting time to take particle’s next step
〈τ〉 is infinite, with heavy-tailed distributions ω(t) ∼ 1/tα+1 when t 7→ ∞,
whereas for normal diffusion 〈τ〉 is finite [4, 5]. Subdiffusive medium is char-
acterized by subdiffusion parameter α and subdiffusion coefficient D. This
process is most often described by a partial differential equation with the
time derivative of fractional order controlled by α.

Layer media often occur in biological systems. They consist of differ-
ent layers in which normal diffusion or subdiffusion with different parame-
ters occur. Between the layers, partially permeable thin membranes may be
present. In [6–9], boundary conditions at the border between different subd-
iffusive media have been derived by means of a Particle Random Walk model
on a lattice. These conditions involve fractional time derivatives and take
different forms depending on initial location of diffusing particles. There-
fore, the procedure of solving these equations does not seem to be simple.
In this short communication, we present the method of solving fractional
subdiffusion equations for a two-layer system. The presented method can
be generalized into multi-layer systems. We believe that this method will be
helpful in modelling subdiffusion processes in layered systems.

We consider subdiffusion in one-dimensional two-layer system in which
thin partially permeable membrane may separate the layers. In the follow-
ing, the symbol A denotes the region (−∞, xN ) and the symbol B denotes
the region (xN ,∞), the symbols will be also assigned to the functions and
parameters defined in these regions, xN is the position of the border between
media. We denote

C(x, t) =

{
CA(x, t) , x < xN ,
CB(x, t) , x > xN ,

(1)

the initial condition is

C(x, 0) =

{
C0A(x) , x < xN ,
C0B(x) , x > xN .

(2)

Subdiffusion in the regions A and B is described by the following fractional
subdiffusion equations:

∂CA(x, t)

∂t
= DA

∂1−αA

∂t1−αA
∂2CA(x, t)

∂x2
, (3)

∂CB(x, t)

∂t
= DB

∂1−αB

∂t1−αB
∂2CB(x, t)

∂x2
, (4)
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where 0 < αA, αB ≤ 1. The Riemann–Liouville fractional derivative is
defined for 0 < β < 1 as

dβf(t)

dtβ
=

1

Γ (1− β)

d

dt

t∫
0

dt′
(
t− t′

)−β
f
(
t′
)
.

The case of αi = 1 corresponds to the normal diffusion process in the region
i = A,B; then, the fractional time derivative is absent in the equation.

To solve Eqs. (3) and (4), two boundary conditions (BCs) are assumed
at the external walls of the system or at x = ±∞, but next two BCs should
be given at a border between media. One of the boundary conditions shows
that the diffusive flux is continuous at the border [6–9]

JA
(
x−N , t

)
= JB

(
x+N , t

)
, (5)

where

Ji(x, t) = −Di
∂1−αi

∂t1−αi
∂Ci(x, t)

∂x
, i = A,B . (6)

The other boundary condition at the border is different for particles located
initially in A and B regions. This fact prompts us to consider separately
diffusion of particles located initially in the region A and located initially in
the region B. Let us assume that CAA(x, t) and CBA(x, t) are the solutions
to Eqs. (3) and (4), respectively, generated by the particles located initially
in the region A for which the initial condition is{

CAA(x, 0) = C0A(x) , x < xN ,
CBA(x, 0) = 0 , x > xN .

(7)

Similarly, CAB(x, t) and CBB(x, t) are the solutions to Eqs. (3) and (4) for
the initial condition{

CAB(x, 0) = 0 , x < xN ,
CBB(x, 0) = C0B(x) , x > xN .

(8)

The particle concentrations are obtained by means of the formula{
CA(x, t) = CAA(x, t) + CAB(x, t) , x < xN ,
CB(x, t) = CBA(x, t) + CBB(x, t) , x > xN .

(9)

To solve the subdiffusive equations, we use the Laplace transform L[f(t)]

=
∫∞
0 e−stf(t)dt ≡ f̂(s). Due to the formulas L

[
df(t)
dt

]
= sf̂(s)− f(0) and

L
[

dβf(t)

dtβ

]
= sβ f̂(s) , 0 < β < 1 , (10)
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in terms of the Laplace transform Eqs. (3) and (4) are

sĈAi(x, s)− δAiC0A(x) = DAs
1−αA ∂

2ĈAi(x, s)

∂x2
, (11)

sĈBi(x, s)− δBiC0B(x) = DBs
1−αB ∂

2ĈBi(x, s)

∂x2
, (12)

where δij is the Kronecker symbol. The boundary condition (5) reads

DAs
1−αA ∂ĈAi(x, s)

∂x

∣∣∣∣∣
x=x−N

= DBs
1−αB ∂ĈBi(x, s)

∂x

∣∣∣∣∣
x=x+N

. (13)

The second boundary condition is expressed for the functions ĈiA and ĈiB
separately. The detailed form of this condition depends on the probabilities
of passing a single particle across the border between media. Let us denote
by 1 − qA the probability of particle passing through the border from the
medium A to B and by 1 − qB the probability of passing through the bor-
der of a particle moving in the opposite direction, see Figs. 1 and 2. The
probabilities of particle stopping at the border are qA and qB, respectively,
0 ≤ qA, qB ≤ 1. We assume that the partially permeable membrane sepa-
rates the media. Then, we assume that qA 6= 0 and qB 6= 0, this situation is
illustrated in Fig. 1. If the boundary between the media is fully permeable

x 

qA1-

qB1-

A B

 , DAAα  , DBBα

ε

 
x N

Fig. 1. Diffusion through the membrane that occupies the interval (xN − ε/2, xN +

ε/2). A particle that tries to get from the region A to B through the membrane
can do it with a probability 1 − qA, and moving in the opposite direction it can
pass through the membrane with a probability 1 − qB , ε is the thickness of the
membrane.

to particles moving in one direction, which may occur e.g. at the porous
medium–water border, we have qA = 0 or qB = 0, see Fig. 2. When parti-
cles can move freely across the border, we have qA = qB = 0. In this case,
different concentrations of particles at both sides of the border are the result
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x  

A B

 

N

0 < qA <1

qB = 0
 , DAα A  , DBBα

Fig. 2. One-sided fully permeable boundary between media A and B, qA and qB
are the probabilities of stopping diffusing particle at the border.

of different mobility of the particles in the media. The boundary conditions
for the cases mentioned above are qualitatively different. We have [6]√

DAs
1−αA/2ĈAA

(
x−N , s

)
= KA(s)

√
DBs

1−αB/2ĈBA
(
x+N , s

)
, (14)

KB(s)
√
DAs

1−αA/2ĈAB
(
x−N , s

)
=
√
DBs

1−αB/2ĈBB
(
x+N , s

)
, (15)

where

KA(s) =



1−qB
1−qA

√
DB
DA

s(αA−αB)/2
(

1 + εsαB/2

(1−qB)
√
DB

)
, qA 6= 0 , qB 6= 0 ,

(1− qB)
√

DB
DA

s(αA−αB)/2 , qA = 0 , qB 6= 0 ,

1
1−qA

√
DB
DA

s(αA−αB)/2 , qA 6= 0 , qB = 0 ,√
DB
DA

s(αA−αB)/2 , qA = 0 , qB = 0 ,

(16)

KB(s) =



1−qA
1−qB

√
DA
DB

s(αB−αA)/2
(

1 + εsαA/2

(1−qA)
√
DA

)
, qA 6= 0 , qB 6= 0 ,

1
1−qB

√
DA
DB

s(αB−αA)/2 , qA = 0 , qB 6= 0 ,

(1− qA)
√

DA
DB

s(αB−αA)/2 , qA 6= 0 , qB = 0 ,√
DA
DB

s(αB−αA)/2 , qA = 0 , qB = 0 .

(17)

Using Eq. (10), it is easy to see that the inverse Laplace transform of Eqs.
(14) and (15) provides boundary conditions with fractional time derivatives
in the time domain.
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Usually, calculation of inverse Laplace transforms for solutions to subd-
iffusion equations is not easy. However, if the Laplace transform of solution
can be present as a series of

∑∞
n=0 ans

γ+nµe−bns
β , the inverse Laplace trans-

form can be calculated term by term using the formula [6]

L−1
[
sνe−as

β
]
≡ fν,β(t; a) =

1

tν+1

∞∑
k=0

1

k!Γ (−kβ − ν)

(
− a
tβ

)k
, (18)

a, β > 0; the function fν,β is a special case of the H-Fox function and the
Wright function.

As an example, we present the solutions to Eqs. (3) and (4) for qA 6= 0,
qB 6= 0, 0 < αB < αA < 1, and for the initial conditions C0A = δ(x− x0),
C0B = 0, where δ is the delta-Dirac function. In this case, the solution
can be interpreted as a probability density P (x, t;x0) of finding a particle
at point x at time t, x0 is the initial position of the particle at t = 0. For
t� max[t1, t2], where

t1 = (γ̃B/Γ (1− αB/2))2/αB ,

t2 = (γ̃A/γ̃BΓ (1− (αA − αB)/2))2/(αA−αB) ,

and γ̃i = ε
(1−qi)

√
Di

, i = A,B, we get

PA(x, t;x0) =
1

2
√
DA

[
f−1+αA/2,αA/2

(
t;
|x− x0|√

DA

)

−f−1+αA/2,αA/2
(
t;

2xN − x− x0√
DA

)]

+
γ̃A√
DAγ̃B

f−1+αA−αB/2,αA/2

(
t;

2xN − x− x0√
DA

)
, (19)

PB(x, t;x0) =
1√
DB

∞∑
n=0

1

n!

(
x0 − xN√

DA

)n
×

[
f−1+αB/2+nαA/2,αB/2

(
t;
x− xN√
DB

)

− γ̃A
γ̃B
f−1+(n+1)αA/2,αB/2

(
t;
x− xN√
DB

)]
. (20)

The solutions to subdiffusion equations in the system presented in Fig. 1,
obtained using the method presented in this paper, describe well the process
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of releasing antibiotics from a gel into water [7]; a coincidence of theoretical
functions with experimental data is observed there. The examples of plots
of the functions (19) and (20) are presented in Fig. 3.

- 1 0 - 8 - 6 - 4 - 2 0 2 4
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0
P(x

,t;x
0)

x

 1 0 0
 5 0 0
 1 0 0 0

Fig. 3. Plots of the functions (19) and (20) for αA = 0.9, αB = 0.6, DA = 1,
DB = 2, γA = 0.1, γB = 0.2, x0 = −1, and xN = 0 for different times given in the
legend. All quantities are given in arbitrarily chosen units.

The process of particle diffusion from region A = (−∞, xN ) to region
B = (xN ,∞) (and vice versa) is related to the Sparre–Andersen scaling
problem [5, 10]. As part of this problem, the first passage time between
the regions is considered. A detailed analysis of this problem for the model
considered in this paper will be presented elsewhere. Here we show the
distribution of the first passage time between points located in different
parts of the system. Let FBA(x, t;x0) be the probability of arriving for the
first time to x ∈ B at time t, x0 ∈ A is the initial particle position. Assuming
that 1/2 ≤ αA, αB ≤ 1, in the limit of long time, we get

FBA(x, t;x0) = a1f(αB−αA)/2,αA/2

(
t;
xN − x0√

DA

)
−b1fαA−αB/2,αA/2

(
t;
xN − x0√

DA

)
, (21)

FAB(x, t;x0) = a2f(αA−αB)/2,αB/2

(
t;
x0 − xN√

DB

)
−b2fαB−αA/2,αB/2

(
t;
x0 − xN√

DB

)
, (22)
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where a1 =
√
DB/DA, b1 = (γA

√
DB/DA)[1+(x−xN )γB], a2 =

√
DA/DB,

and b2 = (γB
√
DA/DB)[1+(xN−x)γA]. In the limit of t→∞, for αA 6= αB,

we get FBA ≈ c1/t
1+(αA−αB)/2 and FAB ≈ c2/t

1+(αB−αA)/2, where c1 =√
DB/DA/|Γ ((αB − αA)/2)|, c2 =

√
DA/DB/|Γ ((αA − αB)/2)|. For αA =

αB ≡ α, we obtain FBA ≈ d1/t
1+α/2 and FAB ≈ d2/t

1+α/2, where d1 =√
DB(xN − x0)/(DA|Γ (−α/2)|) and d2 =

√
DA(x0 − xN )/(DB|Γ (−α/2)|).

The equations above show that for a sufficiently long time, the function F
depends mainly on the difference of subdiffusion parameters αA and αB as
well as on the region in which the molecule is located at the initial moment.
The membrane affects the parameters b1 and b2 only and does not affect F
within a long-time limit.

We presented the method of solving subdiffusion equations in a two-layer
system. Equations (7)–(17) can be generalized to a multi-layer system, so
this method can be used to determine the concentration distributions of a
diffusing substance in such systems.
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