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Among viable dark matter production mechanisms, the thermal freeze-
out stands out as the most natural and best motivated one. In the usual
theoretical calculations of thermal relic abundance, the assumption of local
thermal equilibrium is made. Is this assumption always justified? We
discuss more accurate treatments, one relying on the inclusion of higher
moments of the Boltzmann equation and the second on solving the evolution
of the phase-space distribution function fully numerically.
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1. Introduction

The production through the thermal freeze-out mechanism remains one
of the most natural and attractive ideas to explain the observed present
abundance of dark matter (DM) particles. In the standard theoretical ap-
proach describing the DM evolution [1], one makes an assumption that the
DM is still kept in local thermal equilibrium (LTE) with the heat bath dur-
ing times where annihilations are affecting the DM number density. Here,
we address the exceptions to this standard picture, discuss when do they
appear and present a method applicable in such cases [2].

As an illustration, we show the impact of departure from LTE on a case
study of a generic resonance model, where we find an effect on the DM relic
density even up to an order of magnitude. We stress, however, that the
methods presented here are of much larger generality and can be applied to
other DM models as well.

2. Thermal relic density out of LTE

While the number density is affected by DM annihilation and produc-
tion processes, the LTE is maintained typically by elastic scatterings of DM
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on the thermal bath particles. In most cases, the latter processes are ex-
pected to have much higher rate than the former, due to mass hierarchy
of mDM � mSM — for at least some of the Standard Model (SM) states
— and, therefore, much higher abundances of said SM states in the thermal
bath. At the same time, due to the crossing symmetry (see Fig. 1), the inter-
action cross section is expected to be of similar order — the argument being
that the squared amplitudes for these two diagrams are given by the same
analytic function F , only with different kinematics. Unless F varies very
strongly with incoming momenta, then indeed the resulting cross sections
for elastic scattering and annihilation are numerically very similar.

Fig. 1. Diagrammatic relation between DM annihilation and elastic scattering of
DM on SM states.

However, there are important exceptions to the above argument. In
general, one can delineate three classes of such cases:

— Strong dependence of annihilation or scattering process on the kine-
matics, e.g., in the presence of (narrow) resonances.

— Violation of mDM � mSM hierarchy, e.g., by sub-threshold annihila-
tion.

— Annihilation and scattering processes having different origin, e.g., in
the case of semi-annihilation [3] models1.

In [2], both semi-analytic and fully numerical methods were developed to
solve the Boltzmann equation and to compute the DM relic abundance in
such circumstances, which we briefly review below.

1 Note that also in models where the dark sector contains more states than only the
DM particle, one can expect that not every particle is in LTE. Indeed, even in simple
co-annihilation scenarios some states, e.g., the bino in supersymmetric models, can
be so weakly coupled that their distribution can be far from the equilibrium one.
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2.1. The coupled Boltzmann equations (cBE)

The evolution of the DM phase-space density fDM(t,p) is well-described
by the Boltzmann equation of the form of

E
(
∂t −Hp · ∇p

)
fDM = C[fDM] , (1)

where H is the Hubble parameter and the collision term C[fDM] contains
all interactions between DM and SM particles, in particular annihilation
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and elastic scatterings [2, 4, 5]
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where v = (EẼ)−1[(p · p̃)2 −m4
DM]1/2, the scattering term is given under the

assumption of momentum transfer much smaller than the DM mass, and the
momentum exchange rate is obtained from transfer cross section σT by
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In analogy to Y ≡ nDM/s for the zeroth moment of fDM, we define
dimensionless variable for its second moment [2, 4]
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If DM particles follow the Maxwell–Boltzmann distribution, e.g., due to
sufficiently strong self-scatterings, they have a temperature TDM =ys2/3/mDM.
In general, for non-thermal distributions, one can read the above equation
as a definition of DM ‘temperature’, in terms of the 2nd moment of fDM.

Integrating Eq. (1) over gDM
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where, in addition to 〈σv〉, we also need to define
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DM

Tn2
DM,eq
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The above set of cBEs governs the evolution of an equilibrium DM phase-
space distribution but at a temperature different from that of the heat bath2.

2.2. The full phase-space Boltzmann equation (fBE)

The second method applicable even if LTE is not maintained around
freeze-out is to solve the Boltzmann Eq. (1) at the full phase-space density
level. We start by rewriting it in two dimensionless coordinates x(t, p) ≡
mDM/T and q(t, p) ≡ p/T, where q is now the ‘momentum’ coordinate that
depends on both p and t. Such new coordinates absorb the change of the
DM momentum and density due to the Hubble expansion.

We then discretize the variable q into qi with i ∈ {1, . . . , N} what allows
to rewrite the initial integro partial differential equation into a set of N
coupled ODEs

d
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where fi ≡ fDM(x, qi), and the derivatives ∂qfi and ∂2
qfi are determined

numerically from several neighboring points to fi, θ is the angle between q
and q̃, and xq ≡

√
x2 + q2. 〈vσD̄M DM→f̄f 〉θi,j is the velocity-weighted cross

section averaged over θ and ∆q̃j ≡ q̃j+1 − q̃j .

2 The set of cBEs (6) and (7) includes a higher moment of fDM, and hence does not close
w.r.t. the variables Y and y. We need additional input to determine the quantities
〈σv〉neq, 〈σv〉2,neq and 〈p4/E3〉 in terms of only y and Y . We accomplish this by
making the following Ansatz for these quantities [2]:
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3. Case study: resonant annihilation

The above formalism was developed in [2] and applied there to the scalar
singlet DM model featuring SM Higgs resonance. Here, we show the result
for its generalization to an arbitrary resonant annihilation of scalar DM an-
nihilating through s-channel scalar resonance into fermion pair. The model
can be effectively parametrized by the resonance width (γ), distance to the
peak (δ) and the coupling factor (ρ), all defined below. In 2→ 2 processes,
the amplitude is dimensionless. Therefore, for resonant processes of the type
DM DM→ R→ XX, amplitude can depend only on these three parameters
and one mass ratio, which we will choose to be mX/mDM. It follows that
the cross section is a function of 5 parameters

mDM , µ =
mX

mDM
, γ =

Γ

mR
, δ =

4m2
DM

m2
R

− 1 , ρ = (λg)2 .

(10)
The latter, ρ, is not specified explicitly in what follows as it is always fixed
by the relic density constraint for a given parameter point. The relevant
amplitudes are given by
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(11)
where s̃ and t̃ are Mandelstam variables normalized by 4m2

DM.
The results for the effect of departure from LTE are shown in Fig. 2. The

contours and colors show the ratio of relic abundance with cBE (Ωh2
cBE) to

the result from standard treatment (Ωh2
0) in the (δ, γ) plane. Well outside

the resonance region or for large widths, the cBE leads to identical results
as the standard approach, indicating that in that cases the assumption of
LTE during chemical freeze-out is well-satisfied. Near the resonance at zero-
velocity (δ ∼ 0) or in the region where the resonant s̃ coincides with the
typical velocities during freeze-out (δ ∈ [−0.4,−0.1]), one can see a large
difference between the two treatments, implying that the LTE assumption
must be strongly violated. Note that the effect is significantly larger than ob-
servational uncertainty on Ωh2 for a wide range of parameters, in particular
for widths potentially as large as the Z boson one.

The results above are obtained with the cBE method which provides a
very good description for the final DM abundance, capturing most of the
effect of the kinetic decoupling. Nevertheless, for high-precision results, one
needs to actually solve the full Boltzmann equation in phase space. This
is because, as the full numerical solution reveals, the shape of fDM(t,p)
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Fig. 2. (Color online) The effect of LTE violation on the DM relic density for scalar
DM resonance model annihilating into SM fermions for mDM = 100 GeV and
µ = 0.5. The contours show the value of Ωh2cBE/Ωh

2
0. The gray shaded area on the

right is where the couplings for this model grow large enough to violate unitarity.

can be quite different from the Maxwell–Boltzmann form, which can intro-
duce departure from the assumptions used in the cBEs. As an example, in
Fig. 3, the time snapshots of the evolution of fDM(t,p) just before, during
and at the end of freeze-out are shown. The top panels show normalized
p2fDM(t,p) at the TDM for the actual (blue) and equilibrium (black) shapes.
The lower panels show evolution of y for the actual (solid/blue) and LTE
(dashed/black) cases, where the dot indicates the time of the snapshot. As
it is evident, the shape of the distribution can indeed depart from equilib-
rium one, which can have either a noticeable impact on the result for the
relic density or a modest one depending on whether or not the shape during
chemical freeze-out is affected for momenta that can combine to

√
s ∼ mR.

Finally, let us comment on applications to other, non-resonant, models.
In [6], we studied the semi-annihilation in the Z3 singlet dark matter. To
this end, the formalism presented above had to be extended to the semi-
annihilation processes, which significantly increases the numerical complex-
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Fig. 3. (Color online) The evolution of fDM(t,p) for the SSF model, mDM =

58 GeV, γ = 3.4× 10−5 and δ = −0.143.

ity of the problem. There, it has also been found that the TDM can differ
significantly from TSM, but the effect on the relic density was mild, due to
relatively velocity independent annihilation process in the Z3 model. This
is expected to change for slightly more complicated scenarios, based on ZN
symmetry or more involved scalar sector [7]. And last, but not least, study
of other cases with both cBE and fBE methods like the aforementioned sub-
threshold annihilation and the late kinetic decoupling with the Sommerfeld
enhanced annihilation is a subject of ongoing work [8].

4. Conclusions

The departure from LTE can have significant implications for the evo-
lution of DM density and relic abundance. We discussed two methods for
calculating this effect: one introducing a coupled system of equations for DM
density and temperature, and second relying on numerically solving for the
full fDM(t,p). We also discussed applications of the formalism and presented
exemplary results in a case study of a generic resonance DM model.
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