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We study and point out the importance of a frozen-in dark matter
production regime via kinematically forbidden decays that arises from the
development of thermal masses of plasma particles.
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1. Introduction

The existence of dark matter (DM) in the form of some kind of elec-
trically neutral particle(s) is well-established by now. In order to explain
the observed DM abundance, various production mechanisms have been de-
vised, from which a particularly interesting one is the so-called “freeze-in”
mechanism [1–3]. For the freeze-in, the assumption is that the DM particle
is initially absent (e.g. negligible decay width of inflaton to DM) and can-
not reach thermal equilibrium due to extremely weak interaction with the
plasma. In contrast to freeze-out, the relic abundance “freezes-in” when the
production of DM stops due to plasma particles falling out of equilibrium.

In these proceedings, we present our recent work [4], which focuses on
a largely neglected case where a plasma particle S develops a substantial
thermal mass and decays to DM (χ). The central point is that at high
enough temperatures, the mass of S can become large thus opening kine-
matically forbidden decay to DM (S → χ̄χ)1. In the following sections, we
take a closer look at the “forbidden freeze-in” regime and identify its main
phenomenological features as general as possible.

2. Standard freeze-in

In this section, we summarize the standard freeze-in case, where the
thermal mass of the mediator particle that decays to DM is neglected (i.e.
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1 This production case was first noted in [5] for gravitino production.
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the decay S → χ̄χ is allowed in the vacuum). Assuming that the decays
dominate the production, we can estimate that the DM relic abundance from
the Boltzmann equation (BE) for the yield (Y ≡ n/s) takes the form of

−HsT δ−1h
dYDM

dT
=
Γχ
π2
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(mS

T

)
m2
S T , (1)

with Γχ the decay width to DM. The BE can be approximately solved by2
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If the production of DM happens via non-renormalizable operators, e.g.
DM production via a 2→ 2 process which occurs due to a dimension-d op-
erator, the amplitude at high temperatures can be approximated as |M|2 ≈
γd

(√
ŝ
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)2n
(with n = d − 4). Following [3], we can show that the yield
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(3)
The two solutions of the relevant BEs show that the relic abundance

freezes-in around the mass of the mediator (reheating temperature) for pro-
duction due to renormalizable (non-renormalizable) operators.

3. Forbidden freeze-in

This section is dedicated to the production of DM via kinematically
forbidden channels, i.e. forbidden freeze-in. First, we note that only decays
can be kinematically forbidden, since for more that one initial state particles
the center-of-mass energy increases with temperature. Besides, we note that
the production via forbidden decays is generic in freeze-in, since the DM is
produced by particles in thermal contact with the plasma which develop
thermal mass corrections. Thus, it becomes apparent that there should
be a region in the parameter space that is not accessible via the standard
freeze-in.

In order to study this scenario as generally as possible, we assume that
DM is a Dirac fermion and the mediator is a scalar singlet particle (S) that

2 The relativistic degrees of freedom (g and h) are evaluated at the mean x defined by
〈x〉 ≡

∫∞
0 dx x3K1(x)×x∫∞
0 dx x3K1(x)

≈ 3.4 .
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interacts with the Standard Model (SM) via the Higgs. That is, the relevant
Lagrangian terms are

L ⊃ −yχ S χ̄χ−
λS
4!
S4 − 1

2
m0 2
S S2 −mχχ̄χ + (SH-terms) . (4)

Without great loss of generality, we assume that the total mass of S is given
by m2

S,T ≈ m0 2
S +α2T 2, where assuming that the self-interaction dominates

the thermal mass correction, α2 = λS
24

3. The BE for the production of DM
is given by Eq. (1) with mS → mS,T . However, if mχ � m0

S , the production
happens only at high temperature and the BE can be simplified to

dYDM
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≈
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)(
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2mχ

)2 α4 K1(α)√
g h

δh z , (5)

where z ≡ 2mχ
αT and Γχ ≈ y2χ

4π
(1−z2)3/2

z mχ. Since at mS,T = 2mχ the produc-
tion stops, we integrate this BE from zRH → ∞ to z = 1, which gives the
solution4
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)2(
1 GeV

2mχ

)
K1(α)

(
1√
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We should point out that in this case, the freeze-in temperature is dictated
by the DM mass, while in the standard treatment, it is typically around the
mass of the mediator. We also note that the yield today is proportional to
α4y2χ which makes the forbidden freeze-in very inefficient for typical freeze-in
couplings. So we expect the forbidden freeze-in regime to open-up new
regions in the coupling yχ along with the new mass ranges. These are two
key features of the forbidden freeze-in scenario.

In analogy to the standard freeze-in case, we may define a decay width
due to some non-renormalizable operator as Γχ ∼ γSχ

16π α
2n+1(TΛ )2nT . Then,

the solution to Eq. (5) becomes
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,

(7)
where again we find that the forbidden freeze-in via non-renormalizable op-
erators is dominated around the reheating temperature. The two solutions
of Eq. (5) are shown in Fig. 1. The left panel shows the evolution of the
yield assuming the renormalizable interactions, while the right one shows
the production via non-renormalizable operators.

3 If there are other interactions that affect the thermal mass, α gets simply shifted.
4 The mean z is defined as 〈z〉 ≡

∫ 1
0 dz (1−z2)3/2×z∫ 1

0 dz (1−z2)3/2 ≈ 0.34 .
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Fig. 1. A typical evolution of the DM yield for the forbidden freeze-in via renor-
malizable (left) and non-renormalizable (right) operators.

4. Standard versus forbidden freeze-in

Considering the Lagrangian terms of Eq. (4), we can now find the actual
difference between the standard and forbidden freeze-in scenarios. Taking
mS,T as the mass of S, we calculate the numerical solution of the Boltz-
mann equation (1). In Fig. 2, we show parameter space in the λS–yχ plane
(left) that produces the observed relic abundance [6] and the dependence of
the relic abundance on mχ (right). For the parameter space, we can now
observe that the forbidden freeze-in case (delineated by dark grey/orange)
produces for the most part a distinct region in the parameter space because,
as mentioned before, the mass region is different but also the forbidden pro-
duction tends to be inefficient for small self-interaction of S. The inefficiency
of the production via the forbidden freeze-in can also be seen in the right
panel of Fig. 2, where in the case for negligible m0

S , the relic abundance
is much smaller than the standard freeze-in one, with the same couplings.
Furthermore, in the same panel we observe that at high enough mχ, the
relic abundance becomes independent of mχ, which is something that does
not happen in the standard case (at least for DM production via decays).
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Fig. 2. (Colour on-line) The parameter space in the λS–yχ plane (left) and the
dependence of Ωh2 on mχ (right) given by the numerical solution of the BE (1),
assuming thermal mass for S.
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5. A portal model

So far, we have treated the dark sector as generally as possible. However,
in a realistic scenario, the Higgs–S interactions can produce some complica-
tions, such as the early decoupling of S which may lead to a very different
allowed parameter space than the one shown in Fig. 2. In this section, we
show the allowed parameter space (in the λS–yχ plane) forbidden freeze-in
works in a “portal” model

LDM = χ̄ (iγµ∂
µ −mχ)χ+

1

2
(∂µS)(∂µS)− yχSχ̄χ− VHS ,

with the potential

VHS =
µ2S
2
S2 +

λS
4!
S4 +ASH†H + λHS S

2H†H .

Numerically solving the system of BEs describing the Higgs, S, and DM,
we can find the parameter space that gives us the correct relic abundance
shown in Fig. 3, where we note that this more realistic case produces a simi-
lar allowed parameter space to what is expected according to the discussion
of the previous section. The inclusion of the Higgs–S interaction, however,
introduces couplings with the SM (since Higgs and S mix at T = 0), result-
ing to a region of the parameter space (mainly the forbidden regime) that
violates bounds from Big Bang nucleosynthesis [7], while another region may
be probed by future experiments SHiP [8] and FASER [9].
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Fig. 3. The parameter space in the λS–yχ plane (left) and the (vacuum) mass
versus life-time of S (right).

6. Conclusions

Summing up, we have presented a general treatment of the DM produc-
tion from kinematically forbidden channels, i.e. forbidden freeze-in scenario.
We have considered both renormalizable and non-renormalizable cases, and
have shown that we expect this regime to be in a (mostly) distinct parameter
space in an (almost) model-independent fashion.
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We have also considered a Higgs portal model, which shows how the
forbidden freeze-in can be applied to a realistic scenario, which turned out
to be also testable in future experiments.

Closing, we point out that this type of production appears to be generic
in every freeze-in DM scenario, since typically thermal masses increase with
the temperature and forbidden decays open-up in high enough temperatures.
Since this type of production is largely neglected in the literature, more
models need to be re-examined in order to identify their forbidden regime.
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