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Causal Dynamical Triangulations (CDT) is a non-perturbative lattice
approach to quantum gravity where one assumes space-time foliation into
spatial hyper-surfaces of fixed topology. Most of the previous studies of
CDT were done for the fixed spatial topology of the 3-sphere. We present
recent results for the fixed spatial topology of the 3-torus. We argue that
the topology change does neither affect the phase structure nor the order
of the phase transitions. Thus, the CDT properties seem to be universal,
independently of the spatial topology choice.
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1. Introduction

For nearly 100 years combining general relativity (GR) and quantum
field theory (QFT) into a single theory of quantum gravity (QG) has been an
unsolved problem of theoretical physics. Standard perturbative approaches
applied to quantizing GR turned out to be non-renormalizable [1], however,
following Weinberg’s asymptotic safety conjecture [2], it is still possible to
formulate a consistent and predictive theory of QG. Asymptotic safety re-
quires that gravitational renormalization group flow equations lead to non-
Gaussian ultraviolet (UV) fixed point(s), where QG becomes scale-invariant
and can be investigated non-perturbatively. One of possible solutions is thus
to use non-perturbative lattice QFT techniques. In the lattice formulation,
the UV limit should be associated with a second (or higher) order phase
transition. One should also be able to observe the infrared (IR) limit consis-
tent with GR. Thus, investigating the phase structure and the order of the
phase transitions plays an important role in lattice QG.
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2. Causal Dynamical Triangulations (CDT)
Among many candidate theories of quantum gravity, Causal Dynamical

Triangulations (CDT) is a background-independent, non-perturbative lat-
tice approach based on Feynman’s path integral formalism. CDT defines a
(formal) gravitational path integral over geometries (described by all physi-
cally distinct metric tensors g)

ZQG =

∫
DM[g] eiSHE[g] → ZCDT =

∑
T

eiSR[T ] (1)

by a sum over lattices (also called triangulations T ) constructed from four-
dimensional simplicial building blocks with fixed lengths of space-like and
time-like links. By gluing 4-simplices together, one obtains piecewise linear
manifolds where non-trivial curvature is defined by deficit angles depend-
ing on how many simplices share common two-dimensional triangles. In
CDT, one additionally introduces causal structure, consistent with global
hyperbolicity, which requires that each triangulation admits a global proper
time foliation into spatial slices (three-dimensional hypersurfaces) of fixed
topology. As changes of spatial topology in time would most likely break
causality, one also assumes that the topology of each slice is the same. Such
triangulations can be constructed by using two types of 4-simplices, called
the (4, 1)-simplex and the (3, 2)-simplex1.

In equation (1), SR is the Hilbert–Einstein action SHE obtained following
Regge’s method for describing piecewise linear maifolds [3]

SR[T ] = − (κ0 + 6∆)N0 + κ4
(
N(4,1) +N(3,2)

)
+∆N(4,1) , (2)

whereN(4,1), N(3,2) andN0 denote respectively the number of (4, 1)-simplices,
(3, 2)-simplices and vertices in a triangulation T . κ0, ∆ and κ4 are three
dimensionless bare coupling constants related to Newton’s constant, the cos-
mological constant and the asymmetry between lengths of space-like and
time-like links in the triangulation.

In order to study the regularized path integral ZCDT (1) in four space-
time dimensions, one is forced to apply the Wick rotation which changes
time-like links into space-like links, i.e. changes the real (Lorentzian) time t(L)
into the imaginary (Euclidean) time t(E) (t(L) → t(E) = −it(L)), and also
changes the Lorentzian action into the Euclidean action (S(L)

R → S
(E)
R =

−iS(L)
R ). Accordingly, the path integral ZCDT becomes a partition function

which can be studied numerically using Monte Carlo techniques.
1 Each 4-simplex has exactly 5 vertices. Due to the imposed proper time foliation, each
vertex in the triagulation has a uniquely defined (integer) time coordinate t and the
numbers (n,m) denote the number of vertices in t and t± 1, respectively. For details
of the CDT lattice implementation, one can check [4].
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Most of the previous studies of four-dimensional CDT were done for the
fixed spatial topology of the 3-sphere and time-periodic boundary conditions,
such that space-time topology was: S3 × S1. In such a case, four distinct
phases of quantum geometry, called the A, B, C and Cb phases, were discov-
ered (see figure 1). The most interesting one was the semiclassical phase C,
where 4-dimensional universe consistent with GR was dynamically emerging
from quantum fluctuations [5]. In phase C, the distribution and fluctuations
of spatial volume in time were accurately described by the Hartle–Hawking
minisuperspace action [6, 7]. In the S3 × S1 topology, the A–C transition
was classified to be first order, while the B–Cb and the C–Cb transitions
were found to be second (or higher) order [8, 9], which in principle may be
related with the UV limit of quantum gravity [10, 11].
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Fig. 1. Phase diagram of the 4-dim CDT with the toroidal topology of spatial slices
in the (κ0, ∆) bare couplings plane (κ4 is fine-tuned to critical value consistent with
infinite volume limit). Points are actual measurements and thin solid lines represent
the measured phase transitions (shaded regions are error bars). For comparison,
we also plot the phase transitions measured in the spherical spatial topology (thick
solid lines).

3. CDT with toroidal spatial topology

The (fixed) topology of spatial slices is a free parameter in CDT. Since
we do not know the real topology of the Universe, we can only check if
and how the CDT results depend on the spatial topology choice. Below, we
present new results obtained for the fixed spatial topology of the 3-torus (and
the time periodic boundary conditions, resulting in the space-time topology:
T 3 × S1) which has been studied recently.

In the toroidal spatial topology, one can observe the analogue of the
semiclassical phase C, but the average spatial volume distribution in time
〈V3(t)〉 changes from that of the (Euclidean) de Sitter space in the spher-
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ical CDT to the flat profile in the toroidal case. This is not surprising as
in principle different topological conditions may favour different solutions
of GR and the quantum fluctuations occur around a different semiclassical
background geometry in each case. Nevertheless, in the toroidal CDT case,
the fluctuations of V3(t) are again well-described by the minisuperspace ac-
tion. Now, due to the lack of the semiclassical potential term in the effective
action, one can also observe a quantum correction of the potential, which
could not be measured in the spherical CDT [12, 13].

In order to identify various phases of quantum geometry, one can define
the following order parameters, which were earlier used in the spherical CDT:

OP1 = N0/
(
N(4,1) +N(2,3)

)
, OP2 = N(3,2)/N(4,1) ,

OP3 =
∑
t

(V3(t+ 1)− V3(t))2 , OP4 = max
v
O(v) , (3)

where O(v) is the vertex coordination number, i.e. the number of simplices
sharing a given vertex v. The behaviour of the order parameters in all CDT
phases has been summarized in Table I.

TABLE I

Order parameters used in CDT phase transition studies.

Phase A Phase B Phase C Phase Cb

OP1 large small medium medium
OP2 small small large large
OP3 medium large small medium
OP4 small large small large

By measuring the order parameters in various points of the CDT phase
diagram (see figure 1), one can show that the analogues of all four phases
discovered in the spherical topology are also present in the toroidal topol-
ogy [14]. The precise position of a given phase transition is signaled by
a peak of susceptibility

χOP ≡
〈
OP2

〉
− 〈OP〉2 (4)

of an order parameter OP. The phase diagram in figure 1 shows that the
toroidal CDT phase transitions are only slightly shifted versus the spherical
CDT case which most likely results from different finite size effects in each
of the two topologies2. The studies of CDT with the space-time topology

2 The minimal possible triangulation of the 3-torus is much larger than the minimal
triangulation of the 3-sphere [12].
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T 3 × S1 performed in the most interesting region of the parameter space,
near the conjectured “quadruple” point where all four phases were supposed
to meet, revealed that in fact there are two separate “triple” points where
three of the four phases meet3. As a result, one can observe a direct C–B
phase transition line (see figure 1).

The order parameters (3) can also be used to measure the order of the
phase transitions. By looking at the Monte Carlo history of an order param-
eter at the transition point, one can check if the parameter jumps between
two different states which can be a sign of a first-order transition. If the
separation of the states is large enough, one typically observes a hysteresis
at the transition region. One should also carefully analyse finite size effects
related to the (finite) volume of triangulations fixed in the numerical simu-
lations, e.g. the separation of the states can either increase or decrease with
the lattice volume which can imply the first or the higher order transition,
respectively. Due to the finite size effects, the position of the transition
point will also typically shift in the parameter space when the lattice vol-
ume is increased and one can measure critical exponents related to this shift.
The critical exponent (close to) one suggests a first order transition, while a
higher value of the exponent is typical for a higher order transition. By using
these tools, one was able to show that the (recently discovered) direct C–B
transition is most likely first order [15], albeit with some untypical properties
suggesting that the end points can be higher order. In the T 3×S1 topology,
it was also confirmed that the A–C transition is first order [16] and the B–Cb

transition is higher order, exactly as it was observed in the S3×S1 topology.
The question mark remains for the C–Cb transition, which was shown to be
second (or higher) order in the spherical case. In the toroidal CDT, one ob-
serves very strong hysteresis in the transition region, suggesting a first order
transition. So far, due to the hysteresis, the numerical algorithms used in the
Monte Carlo simulations do not allow for precise finite size scaling analysis
of that transition so one can neither prove or disprove this hypothesis.

4. Summary and conclusions

In principle, the CDT results may depend on the choice of (fixed) spatial
topology. Most of the previous studies of CDT were done for the spatial
topology of the 3-sphere and the time periodic boundary conditions. We
have briefly presented the recent results of CDT with the spatial topology
of the 3-torus. We have shown that the phase structure and the order of the
measured phase transitions have not changed due to the topology change

3 In the S3 × S1 CDT the autocorrelation time measured in the numerical simulations
performed in this region of the parameter space was extremely large and triangula-
tions got effectively “freezed” in the Monte Carlo time making precise phase transition
studies impossible.
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(see figure 1 and Table II). The studies provide evidence that the CDT
results are universal, independently of the real topology of the Universe.

TABLE II

Comparison of phase transitions observed in the toroidal and in the spherical CDT.

Phase transition Topology: S1 × T 3 Topology: S1 × S3

A–C 1st order 1st order
B–C 1st order ?
B–Cb higher order higher order
C–Cb ? higher order
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